scholarly journals Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Chee Wai Chua ◽  
Nusrat J Epsi ◽  
Eva Y Leung ◽  
Shouhong Xuan ◽  
Ming Lei ◽  
...  

Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Mikaela Nevin ◽  
Janine Gallego ◽  
Xiaohua Song ◽  
Qiang Jiang ◽  
Alan Underhill ◽  
...  

Abstract BACKGROUND The identification of H3.3/H3.1K27M in most DIPG has changed our understanding of this disease. H3K27M mutations usually demonstrate global loss of H3K27 trimethylation (me3) with gain of H3K27 acetylation (ac). Single cell RNAseq has identified the putative cell of origin as oligodendroglial progenitor cells (OPC). The distalless gene family is necessary for the differentiation and tangential migration of committed neural progenitors to become GABAergic interneurons. Dlx1/Dlx2 double knockout (DKO) cells from the ganglionic eminences (GE) transplanted into a wild-type environment become oligodendrocytes. RESULTS We identified DLX2 occupancy of early (Olig2, Nkx2.2) and late (Myt1, Plp1) genes required for OPC differentiation in vivo and confirmed direct DLX2 protein-promoter DNA binding in vitro. Co-expression of Dlx2 with target sequences reduced reporter gene expression in vitro. There was increased expression of OLIG2, NKX2.2 and PLP-1 expression in vivo, consistent with de-repression in the absence of Dlx1/Dlx2 function. Transient over-expression of a Dlx2-GFP construct into murine DIPG cells from a GEMM that develops DIPG resulted in significant increases in expression of Gad isoforms with concomitant decreases in Olig2 and Nkx2.2. Dlx2-transfected mDIPG cells also demonstrated reduced migration, invasion and colony formation in vitro. Of significance, there was global restoration of H3K27me3 with corresponding loss of H3K27ac expression in transfected cells compared to controls. CONCLUSIONS DLX2 promotes GABAergic differentiation and migration while concomitantly repressing OPC differentiation in vivo. Developmental reprogramming of mDIPG cells by DLX2 demonstrates the potential role for directed differentiation strategies towards improving patient outcomes for this devastating pediatric cancer.


2017 ◽  
Vol 26 (144) ◽  
pp. 170054 ◽  
Author(s):  
Carla F. Kim

The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rashmi Nanjundappa ◽  
Dong Kong ◽  
Kyuhwan Shim ◽  
Tim Stearns ◽  
Steven L Brody ◽  
...  

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.


2020 ◽  
pp. 019262332091824
Author(s):  
Richard Haworth ◽  
Michaela Sharpe

In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.


2019 ◽  
Vol 116 (13) ◽  
pp. 6435-6440 ◽  
Author(s):  
Natasha C. Lucki ◽  
Genaro R. Villa ◽  
Naja Vergani ◽  
Michael J. Bollong ◽  
Brittney A. Beyer ◽  
...  

Glioblastoma multiforme (GBM; grade IV astrocytoma) is the most prevalent and aggressive form of primary brain cancer. A subpopulation of multipotent cells termed GBM cancer stem cells (CSCs) play a critical role in tumor initiation, tumor maintenance, metastasis, drug resistance, and recurrence following surgery. Here we report the identification of a small molecule, termed RIPGBM, from a cell-based chemical screen that selectively induces apoptosis in multiple primary patient-derived GBM CSC cultures. The cell type-dependent selectivity of this compound appears to arise at least in part from redox-dependent formation of a proapoptotic derivative, termed cRIPGBM, in GBM CSCs. cRIPGBM induces caspase 1-dependent apoptosis by binding to receptor-interacting protein kinase 2 (RIPK2) and acting as a molecular switch, which reduces the formation of a prosurvival RIPK2/TAK1 complex and increases the formation of a proapoptotic RIPK2/caspase 1 complex. In an orthotopic intracranial GBM CSC tumor xenograft mouse model, RIPGBM was found to significantly suppress tumor formation in vivo. Our chemical genetics-based approach has identified a drug candidate and a potential drug target that provide an approach to the development of treatments for this devastating disease.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3170
Author(s):  
Alexander Ney ◽  
Gabriele Canciani ◽  
J. Justin Hsuan ◽  
Stephen P. Pereira

Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 22006-22018 ◽  
Author(s):  
Vijay Sagar Madamsetty ◽  
Krishnendu Pal ◽  
Sandeep Keshavan ◽  
Thomas R. Caulfield ◽  
Shamit Kumar Dutta ◽  
...  

Schematic representation demonstrating the fabrication and in vivo evaluation of an immune-modulatory nano-formulation consisting of irinotecan and curcumin in immune-competent mouse models of pancreatic adenocarcinoma.


2011 ◽  
Vol 29 (16) ◽  
pp. 2273-2281 ◽  
Author(s):  
Katerina Politi ◽  
William Pao

Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review.


2021 ◽  
Author(s):  
Liancheng Fan ◽  
Yiming Gong ◽  
Yuman He ◽  
Wei-Qiang Gao ◽  
Baijun Dong ◽  
...  

Abstract Background: The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of second-generation androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Methods: TRIM59 expression was evaluated in PCa samples from patients at first diagnosis or at relapse stage post ARPI treatment by immunohistochemistry; in vitro effects of TRIM59 were determined by cell proliferation, sphere formation and cell migration assays; while in vivo analysis was performed using subcutaneous tumor model. Western blot, qPCR assay, dual luciferase assessment, chromatin immunoprecipitation and RNA sequencing were applied for mechanistic exploration.Results: Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Conclusion: Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.


Sign in / Sign up

Export Citation Format

Share Document