scholarly journals Using subthreshold events to characterize the functional architecture of the electrically coupled inferior olive network

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yaara Lefler ◽  
Oren Amsalem ◽  
Nora Vrieler ◽  
Idan Segev ◽  
Yosef Yarom

The electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings. We show that whereas the fast events represent intrinsic regenerative activity, the slow events reflect the electrical connectivity between neurons (‘spikelets’). Recordings from cell pairs revealed the synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an accurate estimation of the number of connected cells and is suggestive of a clustered organization. This study thus provides a new perspective on the functional and structural organization of the olivary nucleus and a novel experimental and theoretical approach to study electrically coupled networks.

2018 ◽  
Author(s):  
Yaara Lefler ◽  
Oren Amsalem ◽  
Idan Segev ◽  
Yosef Yarom

AbstractThe electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of mice IO nucleus. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings. We show that the fast events represent a regenerative response in unique excitable spine-like structures in the axon hillock, whereas the slow events reflect the electrical connectivity between neurons (‘spikelets’). Recordings from cell pairs revealed the synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an accurate estimation of the number of connected cells and is suggestive of a clustered organization. This study thus provides a new perspective on the functional and structural organization of the olivary nucleus, insights into two different subthreshold non-synaptic events, and a novel experimental and theoretical approach to the study of electrically-coupled networks.


2016 ◽  
Vol 311 (6) ◽  
pp. E952-E963 ◽  
Author(s):  
Yueshui Zhao ◽  
Xue Gu ◽  
Ningyan Zhang ◽  
Mikhail G. Kolonin ◽  
Zhiqiang An ◽  
...  

Endotrophin is a cleavage product of collagen 6 (Col6) in adipose tissue (AT). Previously, we demonstrated that endotrophin serves as a costimulator to trigger fibrosis and inflammation within the unhealthy AT milieu. However, how endotrophin affects lipid storage and breakdown in AT and how different cell types in AT respond to endotrophin stimulation remain unknown. In the current study, by using a doxycycline-inducible mouse model, we observed significant upregulation of adipogenic genes in the white AT (WAT) of endotrophin transgenic mice. We further showed that the mice exhibited inhibited lipolysis and accelerated hypertrophy and hyperplasia in WAT. To investigate the effects of endotrophin in vitro, we incubated different cell types from AT with conditioned medium from endotrophin-overexpressing 293T cells. We found that endotrophin activated multiple pathological pathways in different cell types. Particularly in 3T3-L1 adipocytes, endotrophin triggered a fibrotic program by upregulating collagen genes and promoted abnormal lipid accumulation by downregulating hormone-sensitive lipolysis gene and decreasing HSL phosphorylation levels. In macrophages isolated from WAT, endotrophin stimulated higher expression of the collagen-linking enzyme lysyl oxidase and M1 proinflammatory marker genes. In the stromal vascular fraction isolated from WAT, endotrophin induced upregulation of both profibrotic and proinflammatory genes. In conclusion, our study provides a new perspective on the effect of endotrophin in abnormal lipid accumulation and a mechanistic insight into the roles played by adipocytes and a variety of other cell types in AT in shaping the unhealthy microenvironment upon endotrophin treatment.


Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Chedotal ◽  
E. Bloch-Gallego ◽  
C. Sotelo

The formation of the olivocerebellar projection is supposed to be regulated by positional information shared between pre- and postsynaptic neurons. However, experimental evidence to support this hypothesis is missing. In the chick, caudal neurons in the inferior olive project to the anterior cerebellum and rostral ones to the posterior cerebellum. We here report in vitro experiments that strongly support the existence of anteroposterior polarity cues in the embryonic cerebellum. We developed an in vitro system that was easily accessible to experimental manipulations. Large hindbrain explants of E7.5-E8 chick embryos, containing the cerebellum and its attached brainstem, were plated and studied using axonal tracing methods. In these cultures, we have shown that the normal anteroposterior topography of the olivocerebellar projection was acquired, even when the cerebellar lamella was detached from the brainstem and placed again in its original position. We also found that, following various experimental rotations of the anteroposterior axis of the cerebellum, the rostromedian olivary neurons still project to the posterior vermis and the caudolateral neurons to the anterior vermis, that now have inverted locations. Thus, the rotation of the target region results in the rotation of the projection. In addition, we have shown that the formation of the projection map could be due to the inability of rostromedian inferior olivary axons to grow in the anterior cerebellum. All these experiments strongly indicate that olivocerebellar fibers recognize within their target region polarity cues that organize their anteroposterior topography, and we suggest that Purkinje cells might carry these cues.


1999 ◽  
Vol 19 (1) ◽  
pp. 86-98 ◽  
Author(s):  
David E. Sterner ◽  
Patrick A. Grant ◽  
Shannon M. Roberts ◽  
Laura J. Duggan ◽  
Rimma Belotserkovskaya ◽  
...  

ABSTRACT SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Δ spt3Δand gcn5Δ spt8Δ) causing loss of a member of each of the moderate classes have severe phenotypes, similar tospt7Δ, spt20Δ, or ada1Δmutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhihong Dai ◽  
Furong Zhao ◽  
Ying Li ◽  
Jing Xu ◽  
Zhiyu Liu

Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs’ inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.


Author(s):  
O. I. Agapova ◽  
A. E. Efimov ◽  
M. M. Moisenovich ◽  
V. G. Bogush ◽  
I. I. Agapov

Aim.To perform a comparison of three-dimensional nanostructure of porous biocompatible scaffolds made of fibroinBombix moriand recombinant spidroin rS1/9.Materials and methods.Three-dimensional porous scaffolds were produced by salt leaching technique. The comparison of biological characteristics of the scaffolds shows that adhesion and proliferation of mouse fibroblastsin vitroon these two types of scaffolds do not differ significantly. Comparative experimentsin vivoshow that regeneration of bone tissue of rats is faster with implantation of recombinant spidroin scaffolds. Three-dimensional nanostructure of scaffolds and interconnectivity of nanopores were studied with scanning probe nanotomography (SPNT) to explain higher regenerative activity of spidroin-based scaffolds.Results.Significant differences were detected in the integral density and volume of pores: the integral density of nanopores detected on 2D AFM images is 46 μm–2    and calculated volume porosity is 24% in rS1/9-based scaffolds; in fibroin-based three-dimensional structures density of nanopores and calculated volume porosity were 2.4 μm–2  and 0.5%, respectively. Three-dimensional reconstruction system of nanopores and clusters of interconnected nanopores in rS1/9-based scaffolds showed that volume fraction of pores interconnected in percolation clusters is 35.3% of the total pore volume or 8.4% of the total scaffold volume.Conclusion.Scanning probe nanotomography method allows obtaining unique information about topology of micro – and nanopore systems of artificial biostructures. High regenerative activity of rS1/9-based scaffolds can be explained by higher nanoporosity of the scaffolds.


2021 ◽  
Author(s):  
Albebson L. Lim ◽  
Philip Moos ◽  
Christopher D. Pond ◽  
Erica C. Larson ◽  
Laura J. Martins ◽  
...  

AbstractHIV-1 cDNA pre-integration complexes have been shown to persist for weeks in macrophages and to be transcriptionally active. Early and late gene transcripts are produced, along with some viral proteins, yet whole virus is not. While previous work has focused on the transcription and translation of HIV-1 genes; our understanding of cellular milieu that accompanies viral production is incomplete. We have used an in vitro system to model HIV-1 infection of macrophages, and single cell RNA sequencing (scRNA-seq) to compare the transcriptomes of uninfected cells, cells harboring pre-integration HIV-1 complexes (PIC) and those containing integrated provirus and actively making late HIV proteins. These are also compared to control cells, not exposed to virus.Several observations provide new perspective on the effects of HIV-1 transcription from pre-integrated cDNA versus from integrated provirus. First, HIV-1 transcript levels do not necessarily correlate with virus production, cells harboring PIC cDNA have transcript loads comparable to cells transcribing from provirus and making p24, mCherry, and vpu proteins. Second, all HIV-1 transcripts are easily detectable in abundance from PIC cDNA transcription, as is the case with cells transcribing from provirus, although the frequency of PIC cells with detectable gag-pol, tat, env, and nef transcripts is higher than the corresponding frequencies observed for “Provirus cells”. Third, the background transcriptomes of cells harboring pre- integrated HIV-1 cDNA are not otherwise detectably altered from cells not containing any HIV- 1 transcript. Fourth, integration and production of p24, mCherry, and Vpu proteins is accompanied by a switch from transcriptomes characterized by NFkB and AP-1 promoted transcription to a transcriptome characterized by E2F family transcription products. While some of these observations may seem heretical, single cell analysis provides a more nuanced understanding of PIC cDNA transcription and the transcriptomic changes that support HIV-1 protein production from integrated provirus.Author SummarySingle cell analysis is able to distinguish between HIV-1 infected macrophage cells that are transcribing pre-integrated HIV-1 cDNA and those transcribing HIV-1 provirus. Only cells transcribing HIV-1 provirus are making p24, marker mCherry and Vpu proteins, which corresponds with a change in the host cell’s background transcriptome from one expressing viral restriction and immunological response genes to one that is expressing genes associated with cell replication and oxidative phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document