Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joël Lemière ◽  
Yuan Ren ◽  
Julien Berro

During clathrin-mediated endocytosis in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction of the rate of endocytosis for 2 to 6 minutes, and an increase in the rate of exocytosis for at least 5 minutes allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform clathrin-mediated endocytosis. Our study sheds light on the tight connection between membrane tension regulation, endocytosis and exocytosis.

2018 ◽  
Author(s):  
Joël Lemière ◽  
Yuan Ren ◽  
Julien Berro

AbstractDuring clathrin-mediated endocytosis in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms that enable the actin machinery to adapt to varying membrane tension remain unclear. Here, we used quantitative microscopy to determine that, upon increased membrane tension, the endocytic actin machinery of fission yeast cells rapidly adapts. We also demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction of the rate of endocytosis for 2 to 6 minutes, and an increase in the rate of exocytosis for at least 5 minutes allow cells to add large pools of membrane to the plasma membrane. Our study sheds light on the tight connection between membrane tension regulation, endocytosis and exocytosis in yeast, which are likely conserved among eukaryotes.


2019 ◽  
Author(s):  
Masoud Nickaeen ◽  
Julien Berro ◽  
Thomas D. Pollard ◽  
Boris M. Slepchenko

We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model is a continuous approximation tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and crosslinking. The model predicts forces orthogonal to the invagination that would result in a flask shape that diminishes the net force due to turgor pressure. Simulations of the model with either two rings of nucleation promoting factors as in fission yeast or a single ring of nucleation promoting factors as in budding yeast produce enough force to elongate the invagination against the turgor pressure.


2019 ◽  
Vol 30 (16) ◽  
pp. 2014-2024 ◽  
Author(s):  
Masoud Nickaeen ◽  
Julien Berro ◽  
Thomas D. Pollard ◽  
Boris M. Slepchenko

We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagination that are consistent with formation of a flask shape, which would diminish the net force due to turgor pressure. Simulations of the model with either two rings of nucleation-promoting factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce enough force to elongate the invagination against the turgor pressure.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.


2020 ◽  
Author(s):  
Fan Zheng ◽  
Fenfen Dong ◽  
Shuo Yu ◽  
Tianpeng Li ◽  
Yanze Jian ◽  
...  

ABSTRACTThe spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I, but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule crosslinker Ase1 as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.


1999 ◽  
Vol 43 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Kien C. Ha ◽  
Theodore C. White

ABSTRACT Oral infections caused by the yeast Candida albicansare some of the most frequent and earliest opportunistic infections in human immunodeficiency virus-infected patients. The widespread use of azole antifungal drugs has led to the development of drug resistance, creating a major problem in the treatment of yeast infections in AIDS patients and other immunocompromised individuals. Several molecular mechanisms that contribute to drug resistance have been identified. InC. albicans, the ability to morphologically switch from yeast cells (blastospores) to filamentous forms (hyphae) is an important virulence factor which contributes to the dissemination ofCandida in host tissues and which promotes infection and invasion. A positive correlation between the level of antifungal drug resistance and the ability to form hyphae in the presence of azole drugs has been identified. Under hypha-inducing conditions in the presence of an azole drug, resistant clinical isolates form hyphae, while susceptible yeast isolates do not. This correlation is observed in a random sample from a population of susceptible and resistant isolates and is independent of the mechanisms of resistance.35S-methionine incorporation suggests that growth inhibition is not sufficient to explain the inhibition of hyphal formation, but it may contribute to this inhibition.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Guanglin Xing ◽  
Moyi Li ◽  
Yichen Sun ◽  
Menglong Rui ◽  
Yan Zhuang ◽  
...  

Neuroligins are postsynaptic adhesion molecules that are essential for postsynaptic specialization and synaptic function. But the underlying molecular mechanisms of neuroligin functions remain unclear. We found that Drosophila Neuroligin 1 (DNlg1) regulates synaptic structure and function through WAVE regulatory complex (WRC)-mediated postsynaptic actin reorganization. The disruption of DNlg1, DNlg2, or their presynaptic partner neurexin (DNrx) led to a dramatic decrease in the amount of F-actin. Further study showed that DNlg1, but not DNlg2 or DNlg3, directly interacts with the WRC via its C-terminal interacting receptor sequence. That interaction is required to recruit WRC to the postsynaptic membrane to promote F-actin assembly. Furthermore, the interaction between DNlg1 and the WRC is essential for DNlg1 to rescue the morphological and electrophysiological defects in dnlg1 mutants. Our results reveal a novel mechanism by which the DNrx-DNlg1 trans-synaptic interaction coordinates structural and functional properties at the neuromuscular junction.


2018 ◽  
Author(s):  
Houman Moteshareie ◽  
Maryam Hajikarimlou ◽  
Alex Mulet Indrayanti ◽  
Daniel Burnside ◽  
Ana Paula Dias ◽  
...  

AbstractHeavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.Summary statementWe identified two yeast genes, ITT1 and RPS1A, that when deleted, results in yeast cells sensitivity to heavy metals and metalloids. Further investigation indicated that they influence the expression of URE2 gene, a key player in metal detoxification, by upregulating its translation. Our findings suggest that ITT1 and RPS1A play an indirect role in responding to toxic metal stress.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Lu Hou ◽  
Meng Li ◽  
Chenxing Zhang ◽  
Ningwei Liu ◽  
Xinru Liu ◽  
...  

Fruit cracking is a common physiological disorder in many fruit species. Jujube (Ziziphus jujuba Mill.) is an economically valuable fruit in which fruit cracking seriously affects fruit yield and quality and causes significant economic losses. To elucidate cracking-related molecular mechanisms, the cracking-susceptible cultivars ‘Cuizaohong’ and ‘Jinsixiaozao’ and the cracking-resistant cultivar ‘Muzao’ were selected, and comparative transcriptome analyses of cracking and non-cracking ‘Cuizaohong’ (CC and NC), cracking and non-cracking ‘Jinsixiaozao’ (CJ and NJ), and non-cracking ‘Muzao’ (NM) were conducted. A total of 131 differentially expressed genes (DEGs) were common to the CC vs. NC and CJ vs. NJ comparisons. To avoid passive processes after fruit cracking, we also mainly focused on the 225 gradually downregulated DEGs in the CJ, NJ, and NM samples. The functional annotation of the candidate DEGs revealed that 61 genes related to calcium, the cell wall, the cuticle structure, hormone metabolism, starch/sucrose metabolism, transcription factors, and water transport were highly expressed in cracking fruits. We propose that expression-level changes in these genes might increase the turgor pressure and weaken mechanical properties, ultimately leading to jujube fruit cracking. These results may serve as a rich genetic resource for future investigations on fruit cracking mechanisms in jujube and in other fruit species.


Sign in / Sign up

Export Citation Format

Share Document