scholarly journals Osmolarity-independent electrical cues guide rapid response to injury in zebrafish epidermis

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andrew S Kennard ◽  
Julie A Theriot

The ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.

2020 ◽  
Author(s):  
Andrew S. Kennard ◽  
Julie A. Theriot

AbstractThe ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.


1972 ◽  
Vol 57 (3) ◽  
pp. 821-838
Author(s):  
JOHN P. LEADER

1. The larva of Philanisus plebeius is capable of surviving for at least 10 days in external salt concentrations from 90 mM/l sodium chloride (about 15 % sea water) to 900 mM/l sodium chloride (about 150 % sea water). 2. Over this range the osmotic pressure and the sodium and chloride ion concentrations of the haemolymph are strongly regulated. The osmotic pressure of the midgut fluid and rectal fluid is also strongly regulated. 3. The body surface of the larva is highly permeable to water and sodium ions. 4. In sea water the larva is exposed to a large osmotic flow of water outwards across the body surface. This loss is replaced by drinking the medium. 5. The rectal fluid of larvae in sea water, although hyperosmotic to the haemolymph, is hypo-osmotic to the medium, making it necessary to postulate an extra-renal site of salt excretion. 6. Measurements of electrical potential difference across the body wall of the larva suggest that in sea water this tissue actively transports sodium and chloride ions out of the body.


1984 ◽  
Vol 52 (03) ◽  
pp. 347-349 ◽  
Author(s):  
Daan W Traas ◽  
Bep Hoegee-de Nobel ◽  
Willem Nieuwenhuizen

SummaryNative human plasminogen, the proenzyme of plasmin (E. C. 3.4.21.7) occurs in blood in two well defined forms, affinity forms I and II. In this paper, the feasibility of separating these forms of human native plasminogen by affinity chromatography, is shown to be dependent on two factors: 1) the ionic composition of the buffer containing the displacing agent: buffers of varying contents of sodium, Tris, phosphate and chloride ions were compared, and 2) the type of adsorbent. Two adsorbents were compared: Sepharose-lysine and Sepharose-bisoxirane-lysine. Only in the phosphate containing buffers, irrespective of the type of adsorbent, the affinity forms can be separated. The influence of the adsorbent can be accounted for by a large difference in dissociation constants of the complex between plasminogen and the immobilized lysine.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Paulina Smyk ◽  
Iga Hołyńska-Iwan ◽  
Dorota Olszewska-Słonina

Background. Propolis and its ethanol extract show positive germicidal, bacteriostatic, and anti-inflammatory antioxidants and regenerative properties after use on the surface of the skin. Propolis is in common use in production of cosmetics and in folk medicine. The influence of this resinous mixture on ion channels, channels located in skin cells membranes and skin electrical resistance, was not explained. Objective. The main aim of the study was the evaluation of electrophysiological skin parameters during mechanical and chemical-mechanical stimulation after use of ethanol extract of propolis and propolis ointment in comparison with iso-osmotic Ringer solution. Methods. Skin fragments were taken from white New Zealand rabbits and distributed into three experimental groups which were incubated in ethanol extract of propolis (EEP), propolis ointment, and Ringer solution. Then they were placed in a Ussing chamber to measure electrophysiological parameters values. Results. In this study the influence of EEP on changes in value of electrical potential during block of chloride ions transport at the same time was observed. Ethanol propolis extract dissolved in water increases the transepidermal sodium ions transport in contrast to propolis ointment. Conclusion. The way of preparation cosmetics, which contain propolis, has effects on transepidermal ions transport in the rabbit’s skin. The value of skin electrical resistance is changing with penetration depth of active propolis substances contained in cosmetics.


1982 ◽  
Vol 2 (4) ◽  
pp. 369-377
Author(s):  
F D Gillin ◽  
D S Reiner

The flagellated protozoan Giardia lamblia has been grown only in highly complex media under reduced oxygen tension. Therefore, the organic and physiological requirements for in vitro attachment and short-term (12-h) survival of this organism were determined. In defined maintenance media, a thiol reducing agent (e.g., cysteine) was absolutely required for attachment and survival of this aerotolerant anaerobe. The crude bovine serum Cohn III fraction greatly stimulated attachment and survival. Attachment was decreased at a reduced temperature (24 degrees C as compared with 35.5 degrees C) and absent at 12 degrees C or below. Attachment and survival were strongly dependent upon pH and ionic strength, with optima at pH 6.85 to 7.0 and 200 to 300 mosmol/kg. Sodium chloride was better tolerated than KC1. Reduction of Ca2+ and Mg2+ to below 10(-8) M did not significantly affect attachment.


1982 ◽  
Vol 243 (3) ◽  
pp. C140-C145 ◽  
Author(s):  
A. C. Ericson ◽  
K. R. Spring

NaCl entry into Necturus maculosus gallbladder epithelial cells was studied by determination of the rate of fluid movement into the cell when the Na+-K+-ATPase was inhibited by 10(-4) M ouabain in the serosal bathing solution. The cell swelling was due to continuing entrance of NaCl into the cell across the apical membrane, which increased the solute content of the cell; the resultant rise in cell osmolality induced water flow and cell swelling. The rate of swelling was 4.3% of the cell volume per minute, equivalent to a volume flow across the apical membrane of 1.44 x 10(-6) cm/s, similar in magnitude to the normal rate of fluid absorption by the gallbladder. We determined the mechanism of NaCl entry by varying the ionic composition of the mucosal bath; when most of the mucosal Na+ or Cl- was replaced, cell volume did not increase during pump inhibition. The rate of NaCl entry was a saturable function of Na+ or Cl- in the mucosal bathing solution with K1/2 values of 26.6 mM for Na+ and 19.5 mM for Cl-. The mode of NaCl entry was probably not the parallel operation of Na+-H+ and Cl(-)-HCO-3 exchangers because of the lack of effect of bicarbonate removal or of the inhibitors amiloride and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. NaCl entry was reversibly inhibited by bumetanide in the mucosal bathing solution. Transepithelial NaCl and water absorption is the result of the coupled, carrier-mediated movement of NaCl into the cell across the apical membrane and the active extrusion of Na+ by the Na+-K+-ATPase in the basolateral membrane.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Taekyung Lim ◽  
Youngseok Kim ◽  
Sang-Mi Jeong ◽  
Chi-Hyeong Kim ◽  
Seong-Min Kim ◽  
...  

AbstractLightweight nano/microscale wearable devices that are directly attached to or worn on the human body require enhanced flexibility so that they can facilitate body movement and overall improved wearability. In the present study, a flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fiber-based sensor is proposed, which can accurately measure the amount of salt (i.e., sodium chloride) ions in sweat released from the human body or in specific solutions. This can be performed using one single strand of hair-like conducting polymer fiber. The fabrication process involves the introduction of an aqueous PEDOT:PSS solution into a sulfuric acid coagulation bath. This is a repeatable and inexpensive process for producing monolithic fibers, with a simple geometry and tunable electrical characteristics, easily woven into clothing fabrics or wristbands. The conductivity of the PEDOT:PSS fiber increases in pure water, whereas it decreases in sweat. In particular, the conductivity of a PEDOT:PSS fiber changes linearly according to the concentration of sodium chloride in liquid. The results of our study suggest the possibility of PEDOT:PSS fiber-based wearable sensors serving as the foundation of future research and development in skin-attachable next-generation healthcare devices, which can reproducibly determine the physiological condition of a human subject by measuring the sodium chloride concentration in sweat.


2016 ◽  
Vol 37 (5) ◽  
pp. 1857-1870 ◽  
Author(s):  
Jed A Hartings ◽  
Chunyan Li ◽  
Jason M Hinzman ◽  
C William Shuttleworth ◽  
Griffin L Ernst ◽  
...  

Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (<0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.


Biologija ◽  
2015 ◽  
Vol 61 (1) ◽  
Author(s):  
Aleksandrs Petjukevičs ◽  
Anna Batjuka ◽  
Nataļja Škute

In this study we used spectrophotometry to investigate the effect of negative concentrations of sodium chloride ions on photosynthetic pigments in <i>Elodea canadensis</i> (Michx. 1803). The concentrations of pigments, carotenoids, chlorophyll a and chlorophyll b, in plant leaves provide information about the physiological state of plants and were determined using a spectrophotometer. Quantity and dynamics analyses of photosynthetic pigments are effective methods which allow determining changes in metabolites of plant cells even at insignificant cellular damage. During this research photosynthetic pigments in leaves were obtained at the different sodium chloride levels: 0.0, 0.025, 0.05, 0.1, 0.5 and 1.0 M. The results of this research indicate that these types of stressors at high concentrations: 0.1, 0.5 and 1.0  M after a prolonged time of impact on plant leaves lead to a decrease of photosynthetic pigments and inhibit growth and development of a plant as a whole.


2020 ◽  
Vol 20 (6) ◽  
pp. 3554-3562 ◽  
Author(s):  
Saba Kalantary ◽  
Farideh Golbabaei ◽  
Masoud Latifi ◽  
Mohammad Ali Shokrgozar ◽  
Mehdi Yaseri

Some occupational skin exposures lead to the formation of reactive oxygen species (ROS). The occupational exposure of workers to ROS has been found to be associated with an increased risk of developing skin injuries; therefore, it is essential to protect skin against ROS formation. Recently, some studies have been conducted on introducing better alternatives for skin protection. Nanofibers are good candidates for this purpose. The current study was carried out to assess vitamin E-loaded hybrid Poly(ε-caprolactone) (PCL)/gelatin (Gt) nanofibres mats as protective layers of skin exposed to occupational exposures. Vitamin E (VE) was successfully incorporated into PCL/Gt nanofibers while they were formed by electrospinning method. Nanofibers mats were characterized using scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Their degradation behavior, in vitro release, biocompatibility, and antioxidant activity were studied. The diameters of the PCL/Gt/VE nanofibers decreased with the addition of vitamin E. The degradation rate of nanofibers was equal to 42.98 and 50.69% during 7 and 14 days, respectively. Nanofibers containing vitamin E showed an initial burst followed by a sustained release. The PCL/Gt/VE nanofibers exhibited good free radical scavenging activities despite being exposed to a high electrical potential during electrospinning. PCL/Gt/VE nanofibers supported a higher level of viability compared to PCL/Gt ones and significantly assisted human skin cells against tert-Butyl hydroperoxide (t-BHP) induced oxidative stress. Overall, PCL/Gt/VE nanofibers can potentially be used to protect skin against oxidative stress as a novel approach for worker’s healthcare.


Sign in / Sign up

Export Citation Format

Share Document