scholarly journals Detection of multidrug-resistant Enterobacteriaceae isolated from river waters flowing to the Guanabara Bay and from clinical samples of hospitals in Rio de Janeiro, Brazil

Biomédica ◽  
2019 ◽  
Vol 39 ◽  
pp. 135-149
Author(s):  
Verônica Dias Gonçalves ◽  
Frederico Meirelles-Pereira ◽  
Márcio Cataldo ◽  
Bianca De Oliveira Fonseca ◽  
Barbara Araujo Nogueira ◽  
...  

Introduction: The use of antibiotics in humans, animal husbandry and veterinary activities induces selective pressure leading to the colonization and infection by resistant strains.Objective: We evaluated water samples collected from rivers of the Guanabara Bay, which have suffered minor and major environmental degradation, and clinical samples of hospital origin to detect evidence of the presence of resistance genes to aminoglycosides, beta-lactam antibiotics and fluoroquinolones in strains of Klebsiella pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae and Escherichia coli.Materials and methods: For isolation of the water strains we employed culture media containing 32 μg/ml cephalotin and 8 μg/ml gentamicin. The strains from clinical materials were selected using culture media containing 8 μg/ml gentamicin. The strains were identified and subjected to antimicrobial susceptibility testing (AST), plasmid DNA extraction and polymerase chain reaction (PCR) to detect genes encoding enzymes modifying aminoglycosides (EMA), extended-spectrum beta-lactamases (ESBL) and plasmid mechanisms of quinolone resistance (PMQR).Results: The AST of the isolates recovered from water samples showed multidrugresistance profiles similar to those found in isolates recovered from clinical materials. All isolates from water samples and 90% of the isolates from clinical samples showed at least one plasmid band. In the PCR assays, 7.4% of the isolates recovered from water samples and 20% of those from clinical materials showed amplification products for the three antimicrobial classes.Conclusion: We believe that the detection of microorganisms presenting genetic elements in environments such as water is necessary for the prevention and control of their dissemination with potential to infect humans and other animals in eventual contact with these environments.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Sadegh Rezai ◽  
Ebrahim Salehifar ◽  
Alireza Rafiei ◽  
Taimour Langaee ◽  
Mohammadreza Rafati ◽  
...  

Escherichia coliremains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producingE. coliisolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of theE. coliisolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence ofCTX,TEM,SHV,GES, andVEBbeta-lactamase genes. About 30.5% of isolatedE. coliwas ESBL-producing strain. TheTEMgene was the most prevalent (49%) followed bySHV(44%),CTX(28%),VEB(8%), andGES(0%) genes. The ESBL-producingE. coliisolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producingE. coliin urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise.


2020 ◽  
Vol 14 (3) ◽  
pp. 2027-2032
Author(s):  
Mita D. Wadekar ◽  
J.V. Sathish ◽  
C. Pooja ◽  
S. Jayashree

Resistance to beta lactam antibiotics is the most common cause for beta-lactamase production. Increasing number of extended spectrum beta-lactamase (ESBL) producers has reduced the treatment options which resulted in emergence of multidrug resistant strains, treatment failure and hence increased mortality. To detect phenotypically, ESBL producers in Gram negative isolates from different samples and to know their susceptibility pattern. A retrospective study of Gram negative isolates was conducted. Total of 521 isolates were isolated from various samples. They were processed and identified by standard procedures. The antibiotic susceptibility testing was performed by Kirby- Bauer disc diffusion method using CLSI guidelines. ESBL was detected by combination disk test. A total of 521 Gram negative isolates were isolated which included E. coli, Klebsiella pneumoniae, Citrobacter spp., Enterobacter spp., Proteus spp. and Acinetobacter spp. Pseudomonas aeruginosa. Of 521 isolates tested, ESBL was detected in 329 (63.1%) isolates. These isolates showed maximum susceptibility to piperacillin- tazobactam (86%) followed by imipenem (78.4%), amikacin (63.5%), cotrimoxazole (54.4%), ciprofloxacin (51%), amoxi-clav (44.9%), cefepime (44.1%), gentamicin (38.9%), cefoxitin (34.9%) and ampicillin (19.1%). ESBL producers which are resistant to beta lactam antibiotics have become a major problem. Detection of these beta-lactamase enzymes by simple disk method and its reporting will help clinicians in prescribing proper antibiotics.


2007 ◽  
Vol 51 (4) ◽  
pp. 1304-1309 ◽  
Author(s):  
Frédéric Robin ◽  
Julien Delmas ◽  
Cédric Schweitzer ◽  
Olivier Tournilhac ◽  
Olivier Lesens ◽  
...  

ABSTRACT Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel bla TEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel β-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (k cat, 5 and 16 s−1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 μM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.


2020 ◽  
Vol 13 (3) ◽  
pp. 135-140
Author(s):  
HauwaYakubu ◽  
Mahmud Yerima Iliyasu ◽  
Asma’u Salisu ◽  
Abdulmumin Ibrahim Sulaiman ◽  
Fatima Tahir ◽  
...  

Carbapenemases are microbial enzymes that confer resistance to virtually all available beta-lactam antibiotics and the most frequent carbapenemases are the Klebsiella pneumoniae Carbapenamase (KPC). Detection of carbapenemases is a significant infection control strategy as the enzymes are often associated with extensive antimicrobial resistance, therapeutic failures and mortality associated with infectious diseases. A total of 400 clinical samples were collected from different groups of patients in Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria and 118 K. pneumoniae were isolated using standard microbiological techniques. The isolates were subjected to antibiotic susceptibility testing by Kirby-Bauer disc diffusion method, then screened for Carbapenamase production using modified Hodge test. The results indicated that the isolates were resistant to Ampicillin (61.9%), Ceftriaxone (50.8%) and Ceftazidime (50.8%), then Ciprofloxacin (54.2%), but predominantly sensitive to Imipenem (66.9%), Eterpenem (60.2%) and Meropenem (65.3%). It was found that 38 (32.2%) of the isolates phenotypically shows the presence of Carbapenamase, with highest frequency of (40.7%) among patients, mainly adult females with cases of Urinary Tract Infections (UTIs) and the least from wound (11.8%).This study revealed that the isolates produced other beta-lactamases than KPC or variants of Carbapenamase that cannot be detected by modified Hodge test, thus shows low resistance to carbapenems. Therefore further studies is needed to genotypically confirm the presence of KPC in these isolates.


Author(s):  
Surya Sankar ◽  
Thresia . ◽  
Anu Bosewell ◽  
M. Mini

Background: Carbapenems are beta-lactam antibiotics that are considered as the last line of therapy against multidrug resistant extended spectrum beta-lactamase. The resistance to carbapenems predominantly through carbapenemase is one of the most important emerging health problems worldwide in the therapy of clinical infections. The objective of the present study is to determine the presence of carbapenemase encoding genes among Gram- negative bacterial spp. associated with clinical infections in dogs. Methods: 30 Escherichia coli, 11 Klebsiella pneumoniae and three Pseudomonas aeruginosa isolated from urine, swabs from lesional skin and anterior vagina of dogs presented with different clinical ailments formed the samples for the study. Polymerase chain reaction was carried out to detect the presence of carbapenemase encoding genes viz., KPC, NDM, OXA, VIM and IMP among the isolates.Result: Out of the 44 Gram- negative isolates tested, 28 (76.3%) were positive for at least one tested carbapenemase gene. The highest frequency of carbapenemase recorded was for NDM followed by OXA-181, KPC, OXA-48 and VIM. Our study identified a high prevalence of carbapenemases among companion animals like dogs which could act as potential source of transmission of these resistance bacteria or their genomes to humans.


2016 ◽  
Vol 60 (8) ◽  
pp. 5044-5046 ◽  
Author(s):  
Willames M. B. S. Martins ◽  
Adriana G. Nicoletti ◽  
Silvia R. Santos ◽  
Jorge L. M. Sampaio ◽  
Ana C. Gales

ABSTRACTBKC-1 is a new class A serine carbapenemase that was recently identified inKlebsiella pneumoniaeclinical isolates. The principal objective of this study was to evaluate the frequency ofblaBKC-1by testing a collection ofKlebsiellaisolates. Only 2 of 635Klebsiellaisolates (0.3%) carriedblaBKC-1. The two BKC-1-producing isolates belonged to clonal complex 442 and possessed identical pulsed-field gel electrophoresis patterns. TheblaBKC-1gene was inserted into a 10-kb plasmid that was identical to the previously reported plasmid, p60136. The BKC-producingK. pneumoniaeisolates presented also possessed other mechanisms for beta-lactam resistance, such as genes encoding extended-spectrum beta-lactamases and mutations in the genesompK35andompK36, encoding the major porins.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ruslan Tsivkovski ◽  
Maxim Totrov ◽  
Olga Lomovskaya

ABSTRACT QPX7728 is a new ultrabroad-spectrum inhibitor of serine and metallo-beta-lactamases (MBLs) from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A extended-spectrum beta-lactamases (ESBLs) (50% inhibitory concentration [IC50] range, 1 to 3 nM) and carbapenemases such as KPC (IC50, 2.9 ± 0.4 nM) as well as class C P99 (IC50 of 22 ± 8 nM) with a potency that is comparable to or higher than recently FDA-approved beta-lactamase inhibitors (BLIs) avibactam, relebactam, and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/58, IC50 range, 1 to 2 nM) as well as MBLs such as NDM-1 (IC50, 55 ± 25 nM), VIM-1 (IC50, 14 ± 4 nM), and IMP-1 (IC50, 610 ± 70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high-efficiency k2/K ranging from 6.3 × 104 (for P99) to 9.9 × 105 M−1 s−1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5 to 20 min for OXA carbapenemases from A. baumannii, ∼50 min for OXA-48, and 2 to 3 h for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at a 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on–fast-off kinetics, with Kis of 7.5 ± 2.1 nM, 32 ± 14 nM, and 240 ± 30 nM for VIM-1, NDM-1, and IMP-1, respectively. QPX7728’s ultrabroad spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
M. V. Sycheva ◽  
L. P. Popova ◽  
T. M. Pashkova ◽  
Y. A. Khlopko ◽  
O. L. Kartashova ◽  
...  

We report here the draft genome sequence of Enterococcus faecium strain ICIS 18, which was isolated from human feces. Analysis of the E. faecium ICIS 18 genome revealed genes encoding resistance to metals, fluoroquinolones, and beta-lactam antibiotics.


2019 ◽  
Vol 11 (02) ◽  
pp. 107-110 ◽  
Author(s):  
Morubagal R. Rao ◽  
Pooja Chandrashaker ◽  
Rashmi P. Mahale ◽  
Sowmya G. Shivappa ◽  
Ranjitha S. Gowda ◽  
...  

Abstract PURPOSE: Multidrug-resistant organisms causing community-acquired and hospital-acquired infections are increasing at a dangerous rate. Carbapenemase-producing Enterobacteriaceae and Pseudomonas species are an important source of concern since these organisms are not only resistant to beta-lactam antibiotics but also show cross-resistance to other groups of antibiotics. In the present study, rapid detection of these carbapenemase-producing Enterobacteriaceae and Pseudomonas species by carbapenemase Nordmann–Poirel (Carba NP) test was evaluated by comparing with modified Hodge test (MHT). MATERIALS AND METHODS: Imipenem-resistant Enterobacteriaceae and Pseudomonas species isolated from various samples such as pus, blood, sputum, urine, and endotracheal aspirates were processed for carbapenemase detection by MHT and Carba NP test. Kappa analysis was done to evaluate the percentage agreement between the two tests. RESULTS: Seventy imipenem-resistant Enterobacteriaceae and Pseudomonas isolates were analyzed in the present study for carbapenemase production. 63.41% ofEnterobacteriaceae and 34.48% of Pseudomonas species were carbapenemase producers considering both the methods. By MHT, 36 (51.42%) isolates and, by Carba NP test, 35 (50%) isolates were positive for carbapenemase production out of the 70 isolates. CONCLUSION: Carba NP test when compared to MHT is a simple, rapid, cost-effective biochemical test which can be used in all laboratories in the identification of life-threatening carbapenemase-producing Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document