scholarly journals Force transmission analysis of surface coating materials for multi-fingered robotic grippers

2021 ◽  
Vol 7 ◽  
pp. e401
Author(s):  
Gökhan Erdemir

Robotic systems are generally used for grasping, carrying, holding, and many similar operations, typically in industrial applications. One of the most important components of robotic systems is robot grippers for the aforementioned operations, which are not only mission-critical but also represent a significant operational cost due to the time and expense associated with replacement. Grasping operations require sensitive and dexterous manipulation ability. As a consequence, tactile materials and sensors are an essential element in effective robot grippers; however, to date, little effort has been invested in the optimization of these systems. This study has set out to develop inexpensive, easily replaced pads, testing two different chemical compositions that are used to produce a tactile material for robot grippers, with the objective of generating cost, time, and environmental savings. Each tactile material produced has its specific individual dimension and weight. First, each of the materials under construction was tested under different constant pressures, and its characteristics were analyzed. Second, each tactile material was mounted on a two-fingered robot gripper and its characteristics. Material characteristics were tested and analyzed as regards their ability to grasp different sizes and types of objects using the two-fingered robot gripper. Based on the analysis of the results the most sensitive and cost-effective material for industrial type multi-fingered grippers was identified.

Author(s):  
A. Ghazinezami ◽  
A. Jabbarnia ◽  
R. Asmatulu

Polymeric materials have a wide variety of applications in many manufacturing industries. However, because of the molecular structures and chemical compositions of polymeric materials, they have considerably low resistances against the fire/heat. Although these materials are highly flammable, their flame retardancy can be improved significantly by incorporating with flame retardant nanomaterials. Nanoclay and nanotalc are some of the examples of the flame retardant nanomaterials which are highly cost effective and environmentally friendly for these applications. Thus, these inclusions have a great potential to improve thermal, electrical, and mechanical properties of the new materials. This study is mainly focused on the effects of nanoparticle additions in the polyvinyl chloride (PVC) in terms of the flame retardancy. Five sets of nanocomposite materials were prepared using the solvent casting method at different weight percentages of the nanomaterials. The flame retardancy values of the resultant nanocomposite samples were determined using the ASTM UL 94 standard tests. The test results were also supported with the thermogravimetric analysis (TGA) tests. Surface characterization of the resultant materials was carried out using scanning electron microscopy (SEM). Test results showed that the flame retardancy values of the new nanostructured materials were significantly enhanced in the presence of nanoscale inclusions, which may be useful for various industrial applications.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1301
Author(s):  
Federico Cavedo ◽  
Parisa Esmaili ◽  
Michele Norgia

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahrbanoo Hamedi ◽  
M. Mehdi Afsahi ◽  
Ali Riahi-Madvar ◽  
Ali Mohebbi

AbstractThe main advantages of the dried enzymes are the lower cost of storage and longer time of preservation for industrial applications. In this study, the spouted bed dryer was utilized for drying the garden radish (Raphanus sativus L.) root extract as a cost-effective source of the peroxidase enzyme. The response surface methodology (RSM) was used to evaluate the individual and interactive effects of main parameters (the inlet air temperature (T) and the ratio of air flow rate to the minimum spouting air flow rate (Q)) on the residual enzyme activity (REA). The maximum REA of 38.7% was obtained at T = 50 °C and Q = 1.4. To investigate the drying effect on the catalytic activity, the optimum reaction conditions (pH and temperature), as well as kinetic parameters, were investigated for the fresh and dried enzyme extracts (FEE and DEE). The obtained results showed that the optimum pH of DEE was decreased by 12.3% compared to FEE, while the optimum temperature of DEE compared to FEE increased by a factor of 85.7%. Moreover, kinetic parameters, thermal-stability, and shelf life of the enzyme were considerably improved after drying by the spouted bed. Overall, the results confirmed that a spouted bed reactor can be used as a promising method for drying heat-sensitive materials such as peroxidase enzyme.


2018 ◽  
Vol 51 (4) ◽  
pp. 291-336 ◽  
Author(s):  
Antimo Graziano ◽  
Shaffiq Jaffer ◽  
Mohini Sain

Blends of polyethylene (PE) and polypropylene (PP) have always been the subject of intense reasearch for encouraging polymer waste recycling while producing new materials for specific applications in a sustainable way. However, being thermodynamically immiscible, these polyolefins form a binary system usually exhibiting lower performances compared with those of the homopolymers. Many studies have been carried out to better understand the PE/PP blend compatibilization for developing a high-performance and cost-effective product. Both nonreactive and reactive compatibilization promote the brittle to ductile transition for a PE/PP blend. However, the final product usually does not meet the requirements for high demanding commercial applications. Therefore, further PE/PP modification with a reinforcing filler, being either synthetic or natural, proved to be a good method for manufacturing high-performance reinforcend polymer blend composites, with superior and tailored properties. This review summarizes the recent progress in compatibilization techniques applied for enhancing the interfacial adhesion between PE and PP. Moreover, future perspectives on better understanding the influence of themodynamics on PE/PP synergy are discussed to introduce more effective compatibilization strategies, which will allow this blend to be used for innovative industrial applications.


2014 ◽  
Vol 71 (9) ◽  
pp. 2530-2538 ◽  
Author(s):  
Emmanuel de Braux ◽  
Fletcher Warren-Myers ◽  
Tim Dempster ◽  
Per Gunnar Fjelldal ◽  
Tom Hansen ◽  
...  

Abstract Otolith marking with enriched stable isotopes via immersion is a recent method of batch marking larval fish for a range of research and industrial applications. However, current immersion times and isotope concentrations required to successfully mark an otolith limit the utility of this technique. Osmotic induction improves incorporation and reduces immersion time for some chemical markers, but its effects on isotope incorporation into otoliths are unknown. Here, we tested the effects of osmotic induction over a range of different isotope concentrations and immersion times on relative mark success and strength for 26Mg:24Mg, 86Sr:88Sr and 137Ba:138Ba on Atlantic salmon (Salmo salar) larvae. 71% and 100% mark success were achieved after 1 h of immersion for 86Sr (75 µg L−1) and 137Ba (30 µg L−1) isotopes, respectively. Compared with conventional immersion, osmotic induction improved overall mark strength for 86Sr and 137Ba isotopes by 26–116%, although this effect was only observed after 12 h of immersion and predominately for 86Sr. The results demonstrate that osmotic induction reduces immersion times and the concentrations of isotope required to achieve successful marks. Osmotically induced isotope labels via larval immersion may prove a rapid and cost-effective way of batch marking fish larvae across a range of potential applications.


2021 ◽  
Vol 0 (15) ◽  
pp. 0-0
Author(s):  
Ahmet ÖZBEK ◽  
Oğuzhan PEKİNALP

Aim: The main purpose of this manuscript is to examine the robot technologies developed or under development for use in apparel production. Then, based on the identified related robotic technologies, it is aimed to inform the apparel clothing companies about the latest status of robot technologies and to provide information about the identified shortcomings to the people or institutions interested in this field, leading to new studies. Method: Within the scope of the manuscript, the literature on the subject was searched. Results: As a result of the literature review, robotics developed or under development to perform fabric laying (PR2 robot, Gripper and Picking Pad), sewing (Kuka LWR 4 and Robotic Arm), ironing (Baxter and Humanoid robot TEO) and packaging (Robot Motoman SDA10D) technologies have been identified. However, no robot technology has been found for cutting and quality control processes. Conclusion: Although many robotic systems have been developed for use in the apparel production, it has been understood that new R&D studies are needed in this area in order for the production to be fully robotized.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Abdollahi

Purpose The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction. Design/methodology/approach To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link. Findings To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts. Originality/value The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 483 ◽  
Author(s):  
Aleš Ház ◽  
Michal Jablonský ◽  
Igor Šurina ◽  
František Kačík ◽  
Tatiana Bubeníková ◽  
...  

Lignin has great potential for utilization as a green raw material or as an additive in various industrial applications, such as energy, valuable chemicals, or cost-effective materials. In this study, we assessed a commercial form of lignin isolated using LignoBoost technology (LB lignin) as well as three other types of lignin (two samples of non-wood lignins and one hardwood kraft lignin) isolated from the waste liquors produced during the pulping process. Measurements were taken for elemental analysis, methoxyl and ash content, higher heating values, thermogravimetric analysis, and molecular weight determination. We found that the elemental composition of the isolated lignins affected their thermal stability, activation energies, and higher heating values. The lignin samples examined showed varying amounts of functional groups, inorganic component compositions, and molecular weight distributions. Mean activation energies ranged from 93 to 281 kJ/mol. Lignins with bimodal molecular weight distribution were thermally decomposed in two stages, whereas the LB lignin showing a unimodal molecular weight distribution was decomposed in a single thermal stage. Based on its thermal properties, the LB lignin may find direct applications in biocomposites where a higher thermal resistance is required.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2972 ◽  
Author(s):  
Jorge Rodríguez ◽  
Ivana Semanjski ◽  
Sidharta Gautama ◽  
Nico Van de Weghe ◽  
Daniel Ochoa

Understanding tourism related behavior and traveling patterns is an essential element of transportation system planning and tourism management at tourism destinations. Traditionally, tourism market segmentation is conducted to recognize tourist’s profiles for which personalized services can be provided. Today, the availability of wearable sensors, such as smartphones, holds the potential to tackle data collection problems of paper-based surveys and deliver relevant mobility data in a timely and cost-effective way. In this paper, we develop and implement a hierarchical clustering approach for smartphone geo-localized data to detect meaningful tourism related market segments. For these segments, we provide detailed insights into their characteristics and related mobility behavior. The applicability of the proposed approach is demonstrated on a use case in the Province of Zeeland in the Netherlands. We collected data from 1505 users during five months using the Zeeland app. The proposed approach resulted in two major clusters and four sub-clusters which we were able to interpret based on their spatio-temporal patterns and the recurrence of their visiting patterns to the region.


2012 ◽  
Vol 2 (4) ◽  
pp. 162-165
Author(s):  
Bhavya Ravi ◽  
Madhulika Rai ◽  
Sandhya Mehrotra ◽  
Rajesh Mehrotra

A natural ecosystem contaminated with petroleum hydrocarbons is likely to favor the growth of taxonomically diverse microbes having the ability to degrade these organic compounds. They can be exploited for purposes like bioremediation of oil contaminated soils and to obtain enzymes like lipases having important industrial applications. In this paper, a novel “IBG” (Improved ‘Bust and Grab’) protocol has been reported for the isolation of fungal DNA from strains collected from oil contaminated fields. Conventional methods for DNA isolation from fungi require the use of enzymes, liquid nitrogen, glass beads etc. The method reported here circumvents the use of enzymes or glass beads and is cost effective and can be used while handling large number of samples. The DNA yield obtained by the IBG protocol is significant and of good quality. The good quality DNA isolated by IBG protocol can be used for the quick and cost effective isolation of fungal genomic DNA facilitating the genomic study of microbes obtained from oil contaminated fields.


Sign in / Sign up

Export Citation Format

Share Document