scholarly journals Estrogen receptor—positive breast cancer survival prediction and analysis of resistance–related genes introduction

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12202
Author(s):  
Chen Shuai ◽  
Fengyan Yuan ◽  
Yu Liu ◽  
Chengchen Wang ◽  
Jiansong Wang ◽  
...  

Background In recent years, ER+ and HER2- breast cancer of adjuvant therapy has made great progress, including chemotherapy and endocrine therapy. We found that the responsiveness of breast cancer treatment was related to the prognosis of patients. However, reliable prognostic signatures based on ER+ and HER2- breast cancer and drug resistance-related prognostic markers have not been well confirmed, This study in amied to establish a drug resistance-related gene signature for risk stratification in ER+ and HER2- breast cancer. Methods We used the data from The Cancer Genoma Atlas (TCGA) breast cancer dataset and gene expression database (Gene Expression Omnibus, GEO), constructed a risk profile based on four drug resistance-related genes, and developed a nomogram to predict the survival of patients with I-III ER+ and HER2- breast cancer. At the same time, we analyzed the relationship between immune infiltration and the expression of these four genes or risk groups. Results Four drug resistance genes (AMIGO2, LGALS3BP, SCUBE2 and WLS) were found to be promising tools for ER+ and HER2- breast cancer risk stratification. Then, the nomogram, which combines genetic characteristics with known risk factors, produced better performance and net benefits in calibration and decision curve analysis. Similar results were validated in three separate GEO cohorts. All of these results showed that the model can be used as a prognostic classifier for clinical decision-making, individual prediction and treatment, as well as follow-up.

2021 ◽  
Vol 12 ◽  
Author(s):  
Min Liu ◽  
Yuxuan Xu ◽  
Yaoyao Zhou ◽  
Ronggang Lang ◽  
Zhenyu Shi ◽  
...  

The beta subunit of F1Fo-ATP synthase (ATP5B) has been demonstrated to play an essential role in tumor progression and metastasis. However, there has been no comprehensive pan-cancer multi-omics analysis of ATP5B, while the clinical relevance of ATP5B and its potential mechanism in regulating breast cancer are still poorly understood. In this study, we demonstrated that ATP5B has a higher frequency of amplification than deletion in most cancer types, and the copy number variation (CNV) of ATP5B was significantly positively correlated with its mRNA expression level. DNA methylation analysis across pan-cancer also revealed a strong correlation between ATP5B expression and epigenetic changes. We identified 6 significant methylation sites involved in the regulation of ATP5B expression. Tissue microarrays (TMA) from 129 breast cancer samples, integrated with multiple additional breast cancer dataset, were used to evaluate the ATP5B expression and its correlation with prognosis. Higher levels of ATP5B expression were consistently associated with a worse OS in all datasets, and Cox regression analysis suggested that ATP5B expression was an independent prognostic factor. Gene enrichment analysis indicated that the gene signatures of DNA damage recognition, the E-cadherin nascent pathway and the PLK1 pathway were enriched in ATP5B-high patients. Moreover, somatic mutation analysis showed that a significant different mutation frequency of CDH1 and ADAMTSL3 could be observed between the ATP5B-high and ATP5B-low groups. In conclusion, this study reveals novel significance regarding the genetic characteristics and clinical value of ATP5B highlighted in predicting the outcome of breast cancer patients.


2021 ◽  
Author(s):  
Jiao Zhang ◽  
Hui Lin ◽  
Lei Hou ◽  
Hui Xiao ◽  
Xilong Gong ◽  
...  

Abstract Background: Following the implementation of breast screening programs, the occurrence of DCIS has risen as an early form of neoplasm. Although the prognosis is good, 20-50% of DCIS patients will develop invasive ductal carcinoma (IDC) if they are not handled. It is important to look for promising biomarkers for predicting DCIS prognosis.Methods: The Gene Expression Omnibus (GEO) database provided three microarray profile datasets. The expression of genes that differed between DCIS and normal tissue was investigated. To describe the biological role and intrinsic process pathway, enrichment analysis was used. The Cancer Genome Atlas Breast Cancer Dataset was used to classify the hub genes and further verify the findings using CytoHubba and MCODE, two Cytoscape plugins. The prognostic ability of the core genes signature was determined through time-dependent receiver operating characteristic (ROC), Kaplan-Meier survival curve, Oncomine databases, and UALCAN databases. In addition, in proliferation assays, the prognostic value of core genes was verified.Results: We identified 217 common DEGs, with 101 up-regulated and 138 down-regulated genes in the present study. The top genes were obtained from the PPI network (protein-protein interaction). For DCIS prognosis prediction, a novel six gene signature (including GAPDH, CDH2, BIRC5, NEK2, IDH2, and MELK) was developed. Centered on the TCGA cohort, the ROC curve showed strong results in prognosis prediction. The six core genes signature is often overexpressed in DCIS, which has a weak prognosis. Furthermore, transfected with small interfering RNAs, downregulation of core gene expression significantly inhibits breast cancer cell proliferation, implying a great potential for using core genes in DCIS prognosis.Conclusions: The six core genes signature for promising DCIS biomarkers was validated in our research, which may assist in clinical decision-making for individual care.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaia Griguolo ◽  
Maria Vittoria Dieci ◽  
Laia Paré ◽  
Federica Miglietta ◽  
Daniele Giulio Generali ◽  
...  

AbstractLittle is known regarding the interaction between immune microenvironment and tumor biology in hormone receptor (HR)+/HER2− breast cancer (BC). We here assess pretreatment gene-expression data from 66 HR+/HER2− early BCs from the LETLOB trial and show that non-luminal tumors (HER2-enriched, Basal-like) present higher tumor-infiltrating lymphocyte levels than luminal tumors. Moreover, significant differences in immune infiltrate composition, assessed by CIBERSORT, were observed: non-luminal tumors showed a more proinflammatory antitumor immune infiltrate composition than luminal ones.


2021 ◽  
Vol 20 ◽  
pp. 153303382098329
Author(s):  
Yujie Weng ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Zhongxian Li ◽  
Rong Jia ◽  
...  

Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.


2011 ◽  
Vol 10 (1) ◽  
pp. 135 ◽  
Author(s):  
Yusuke Yamamoto ◽  
Yusuke Yoshioka ◽  
Kaho Minoura ◽  
Ryou-u Takahashi ◽  
Fumitaka Takeshita ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Richard Buus ◽  
Zsolt Szijgyarto ◽  
Eugene F. Schuster ◽  
Hui Xiao ◽  
Ben P. Haynes ◽  
...  

AbstractMulti-gene prognostic signatures including the Oncotype® DX Recurrence Score (RS), EndoPredict® (EP) and Prosigna® (Risk Of Recurrence, ROR) are widely used to predict the likelihood of distant recurrence in patients with oestrogen-receptor-positive (ER+), HER2-negative breast cancer. Here, we describe the development and validation of methods to recapitulate RS, EP and ROR scores from NanoString expression data. RNA was available from 107 tumours from postmenopausal women with early-stage, ER+, HER2− breast cancer from the translational Arimidex, Tamoxifen, Alone or in Combination study (TransATAC) where previously these signatures had been assessed with commercial methodology. Gene expression was measured using NanoString nCounter. For RS and EP, conversion factors to adjust for cross-platform variation were estimated using linear regression. For ROR, the steps to perform subgroup-specific normalisation of the gene expression data and calibration factors to calculate the 46-gene ROR score were assessed and verified. Training with bootstrapping (n = 59) was followed by validation (n = 48) using adjusted, research use only (RUO) NanoString-based algorithms. In the validation set, there was excellent concordance between the RUO scores and their commercial counterparts (rc(RS) = 0.96, 95% CI 0.93–0.97 with level of agreement (LoA) of −7.69 to 8.12; rc(EP) = 0.97, 95% CI 0.96–0.98 with LoA of −0.64 to 1.26 and rc(ROR) = 0.97 (95% CI 0.94–0.98) with LoA of −8.65 to 10.54). There was also a strong agreement in risk stratification: (RS: κ = 0.86, p < 0.0001; EP: κ = 0.87, p < 0.0001; ROR: κ = 0.92, p < 0.001). In conclusion, the calibrated algorithms recapitulate the commercial RS and EP scores on individual biopsies and ROR scores on samples based on subgroup-centreing method using NanoString expression data.


2018 ◽  
Vol 12 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Vikas Chaurasia ◽  
Saurabh Pal ◽  
BB Tiwari

Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


Author(s):  
P. Hamsagayathri ◽  
P. Sampath

Breast cancer is one of the dangerous cancers among world’s women above 35 y. The breast is made up of lobules that secrete milk and thin milk ducts to carry milk from lobules to the nipple. Breast cancer mostly occurs either in lobules or in milk ducts. The most common type of breast cancer is ductal carcinoma where it starts from ducts and spreads across the lobules and surrounding tissues. According to the medical survey, each year there are about 125.0 per 100,000 new cases of breast cancer are diagnosed and 21.5 per 100,000 women due to this disease in the United States. Also, 246,660 new cases of women with cancer are estimated for the year 2016. Early diagnosis of breast cancer is a key factor for long-term survival of cancer patients. Classification plays an important role in breast cancer detection and used by researchers to analyse and classify the medical data. In this research work, priority-based decision tree classifier algorithm has been implemented for Wisconsin Breast cancer dataset. This paper analyzes the different decision tree classifier algorithms for Wisconsin original, diagnostic and prognostic dataset using WEKA software. The performance of the classifiers are evaluated against the parameters like accuracy, Kappa statistic, Entropy, RMSE, TP Rate, FP Rate, Precision, Recall, F-Measure, ROC, Specificity, Sensitivity.


Sign in / Sign up

Export Citation Format

Share Document