scholarly journals Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12586
Author(s):  
Phoomjai Sornsenee ◽  
Moragot Chatatikun ◽  
Watcharapong Mitsuwan ◽  
Kantapich Kongpol ◽  
Nateelak Kooltheat ◽  
...  

Background Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. Methods In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. Results All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. Conclusions All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.

2019 ◽  
Vol 6 (1) ◽  
pp. 67-72
Author(s):  
Ponnuvel Deepa ◽  
Kandhasamy Sowndhararajan ◽  
Minju Kim ◽  
Songmun Kim

In traditional systems of medicine, the bark of Dolichandroneatrovirens has been used to treat various disorders. The main aim of this study was to determine the anti-inflammatory effect of D. atrovirens bark through the inhibition of nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 cells.For this purpose, preliminary phytochemical composition and in vitro antioxidant activities of various solvent extracts of D. atrovirens bark were evaluated to select the most effective extract.The methanol extract of D.atrovirens registered the highest amount of total phenolics (476.2 mg GAE/g) and flavonoid (129.0 mg RE/g)contents witha strong antioxidant activity as measured in DPPH (IC50 of 19.52 μg/mL) and ABTS (IC50of 10.82 μg/mL) scavenging activities.Hence, the methanol extract was selected for cell line study. Further, the methanol extract of D. atrovirens effectively inhibited the production of NO in RAW 264.7 cells induced by LPS (13.1 μM at the concentration of 80 μg/mL). It could be concluded that the presence of higher level of total phenolic components in the methanol extract of D. atrovirens bark might be responsible for reducing the NO level in cells.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1297
Author(s):  
Shan Hong ◽  
Philipus Pangloli ◽  
Ramasamy Perumal ◽  
Sarah Cox ◽  
Leela E. Noronha ◽  
...  

Sorghum is an important cereal with diverse phenolic compounds that have potential health promoting benefits. The current study comparatively characterized the phenolic contents of two novel black-seeded sorghum lines (SC84 and PI570481) using different extraction systems (water, ethanol and their acidified counterparts) and evaluated their antioxidant and anti-inflammatory activities. Phenolic compositions were determined by spectrophotometric assays and HPLC analysis. Antioxidant activities were assessed by radical scavenging effects on nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals, and the oxygen radical absorbance capacity (ORAC). Anti-inflammatory capacity was estimated by measuring levels of pro-inflammatory markers produced by lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Results showed that effects of solvent types and HCl on extraction efficiency differed among phenolic compounds and sorghum samples. Tannins were the most dominant polyphenols in the studied extracts (11.11–136.11 mg epicatechin equivalent/g sorghum). Sorghum extracts exerted more potent scavenging activity on DPPH than NO radicals. In LPS-activated RAW 264.7 cells, sorghum extracts dose-dependently inhibited the production of NO, interleukin-6 (IL-6), and intracellular reactive oxygen species (ROS), with ethanolic extracts showing greater anti-inflammatory activity. Positive correlations were noted between tannin content and DPPH radical scavenging activity, and anti-inflammatory capacity. These results suggest the potential role of tannin-rich sorghum extracts against inflammation and associated diseases.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 380-380
Author(s):  
Hyun-Dong Cho ◽  
Mosammat Briti Rabbani ◽  
Shahidul Islam ◽  
Sun-Ok Lee

Abstract Objectives Sweetpotato is one of the most important crops in the world. However, most of the sweetpotato leaves (SPLs) are discarded despite their high nutritional values. To evaluate the potential utility of SPLs as a functional food, the objectives were to measure the total phenolic contents and their antioxidant activities and to determine the anti-inflammatory effects of SPL phenolic extracts from 24 different cultivars in Arkansas. Methods Sweetpotato leaves were analyzed for total phenolics (TP) and antioxidant activities using Folin-Ciocalteu's assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. To assess cell viability and nitric oxide (NO) inhibition activities, RAW 264.7 cells were pretreated with SPL phenolic extracts at the concentrations of 50–500 μg/mL for 1 h and stimulated with lipopolysaccharide (LPS, 100 ng/mL). Cell viability and NO production were measured using the Cell Proliferation assay and Griess reaction system, respectively. All statistical analyses were performed using the ANOVA procedure (SAS 9.4) with significance at P < 0.05 level. Results Among 24 SPL extracts, SPL#1, 3, 9, 38, and 11 exhibited the strong DPPH scavenging activity with 247, 137, 117, 111 and 106 mM Trolox equivalent/g, respectively. Extracts of SPL#1, 9, 3, 7, and 10 showed a high content of phenolics with containing 17.6, 14.8, 14.7, 14.3 and 14.2 mg gallic acid equivalent/g. When the RAW 264.7 cells were treated with 50–500 μg/mL of SPLs for 24 h, SPL extracts up to 250 μg/mL did not cause any significant cytotoxicity. After inducing inflammation with LPS, 50–100 μg/mL of 24 SPL treatments lowered NO levels (11–44%) in a dose-dependent manner compared to the positive control (P < 0.05). Also, SPL#1, 3, 9, 38, and 11, indicating the highest DPPH radical scavenging activity, showed significant NO reduction (15–49%) at the concentrations of 50–200 μg/mL (P < 0.05). Conclusions The findings showed that sweetpotato leaves are a good source of phenolics to exert significant antioxidant activity and NO inhibitory effects in a cellular system, suggesting that sweetpotato leaves may be used as a functional food for improving immune response. Funding Sources The work was supported by USDA-NIFA.


2004 ◽  
Vol 27 (12) ◽  
pp. 1233-1237 ◽  
Author(s):  
Mong-Seok Choi ◽  
Dong-lm Cho ◽  
Hoo-Kyun Choi ◽  
Suhn Yong Im ◽  
Shi-Yong Ryu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1336
Author(s):  
Jae Sung Lim ◽  
Sung Ho Lee ◽  
Sang Rok Lee ◽  
Hyung-Ju Lim ◽  
Yoon-Seok Roh ◽  
...  

Aucklandia lappa Decne., known as “Mok-hyang” in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ju-Mi Hong ◽  
Jung Eun Kim ◽  
Seul Ki Min ◽  
Kyung Hee Kim ◽  
Se Jong Han ◽  
...  

Umbilicaria antarctica (UA) is a member of the family Umbilicariaceae. To the best of our knowledge, no studies on its anti-inflammatory effects have been reported yet. In the present study, we examined its ability to suppress inflammatory responses and the molecular mechanisms underlying these abilities using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and a zebrafish model of inflammation. We investigated the effects of UA on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW 264.7 cells. To explore the anti-inflammatory mechanisms of UA, we measured the mRNA and protein expression of proinflammatory mediators in LPS-stimulated RAW 264.7 cells using quantitative RT-PCR and western blot analyses, respectively. UA significantly inhibited the production of NO, PGE2, interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α in the LPS-stimulated RAW 264.7 cells. It also suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor- (NF-) κB activation in LPS-stimulated RAW 264.7 cells and tail pin-cutting-induced zebrafish model. Collectively, these findings indicate that UA significantly inhibits LPS-stimulated inflammatory responses. These effects were considered to be strongly associated with the suppression of NF-κB activation. Overall, our results demonstrate that UA extract exerts strong anti-inflammatory activities in in vitro and in vivo models and suggest that UA may be an effective novel therapeutic agent for the treatment of inflammatory diseases.


2020 ◽  
Vol 21 (11) ◽  
pp. 1070-1078 ◽  
Author(s):  
Jinfeng Yang ◽  
Lee Chanok ◽  
Kim Heekyu ◽  
Yong S. Kwon ◽  
Myong J. Kim

Introduction: The plant, Astilboides tabularis (Hemsl.) Engler, is used in Chinese and Korean medicine to regulate blood sugar levels; however, little is known about its precise effects. Materials and Methods: In this study, we aimed to measure the composition as well as the antioxidant, and anti-proliferative capacities of A. tabularis. Various extracts were generated using different organic solvents, and in vitro antioxidant activities were evaluated using DPPH free radical-scavenging and reducing power assays. The extracts were also evaluated based on their ability to inhibit lipopolysaccharide (LPS)-induced Nitric Oxide (NO) production in RAW 264.7 cells. Results: Research shows that the A. tabularis ethyl acetate (EtOAc) extract showed significant antioxidant activity. Additionally, this extract could inhibit the LPS-induced expression of inflammatory mediators and pro-inflammatory cytokines in RAW 264.7 cells, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin-1 beta (IL-1ß). Notably, the A. tabularis EtOAc extract also displayed potent cytotoxic effects against MCF-7 and HeLa cancer cell lines, as determined by MTT assays. Lastly, total phenol and flavonoid content was measured for all extracts, and four flavonoid compounds-catechin, kaempferol, quercitrin, and isoquercetin were isolated from the EtOAc extract. Their structures were confirmed using mass spectrometry and nuclear magnetic resonance, and these isolated compounds were found to display potent DPPH free radical-scavenging activity. Conclusion: Thus, our data suggest that phenolic compounds in A. tabularis extracts promote antioxidant activity, and furthermore, these extracts show numerous features that indicate potential for therapeutic development.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 252
Author(s):  
Hye Min Park ◽  
Ji Yeon Lee ◽  
Min Young Kim ◽  
Chang-Ho Kang ◽  
Hyung Seo Hwang

Astragalus membranaceus (AM) has been used for anti-oxidative, anti-inflammatory, anti-cancer, and immunomodulatory activities. In this study, we confirmed that the anti-oxidative and anti-inflammatory effects of AM were enhanced after it was fermented by Lactiplantibacillus plantarum. The anti-oxidative effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical levels, total phenolic contents (TPC), reducing power, and H2O2 levels. AM-LP MG5145 and MG5276 showed higher free radical scavenging activity than AM-NF (51.22%). In addition, AM-LP MG5145 and MG5276 showed higher TPC (49.11 mg GAE/mL), reducing power (OD700 = 0.37), and H2O2 (1.71 µM) than AM-NF. The calycosin contents determined to AM-NF (17.24 ng/mL), AM-LP MG5145 (139.94 ng/mL), and MG5276 (351.01 ng/mL) using UPLC-ESI-MS/MS. Anti-inflammatory effects were analyzed by investigating the inhibitory effects of fermented AM on cytotoxicity, NO production, and mRNA expression of COX-2, iNOS, NF-κB, and TNF-α in LPS-induced RAW 264.7 cells. AM-LP MG5145 and MG5276 showed no cytotoxicity. AM-LP MG5145 (50.86%) and MG5276 (51.66%) inhibited NO production in LPS-induced RAW 264.7 cells. Moreover, AM-LP MG5145 and MG5276 downregulated macrophage iNOS, COX2, TNF-ɑ, and NF-κB expression. In conclusion, A. membranaceus fermented by L. plantarum MG5145 and MG5276 can be used in cosmetics and health foods as natural antioxidant compounds.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2051
Author(s):  
Hyun-Dong Cho ◽  
Cindi Brownmiller ◽  
Harun Sorker ◽  
Shahidul Islam ◽  
Sun-Ok Lee

Limited information is available regarding the health-promoting activities of sweetpotato leaves (SPL). The present study investigated antioxidant and anti-inflammatory effects, and phenolic contents in 29 SPL cultivars harvested in 2018 and 2019. Extracts showed total phenolic contents 9.4–23.1 mg gallic acid equivalent/g, and DPPH radical scavenging activity indicated 36.6–247.3 mM of Trolox equivalent/g. SPL extracts were identified to contain bioactive components such as, chlorogenic acid (11.7–22.1 μg/mg), 3,4-dicaffeoylquinic acid (16.3–59.9 μg/mg), 3,5-dicaffeoylquinic acid (50.9–72.7 μg/mg), chlorophyll B (6.1–12.3 μg/mg), lutein (1.9–4.9 μg/mg), chlorophyll A (2.7–4.3 μg/mg) and β-carotene (0.1 ≤ μg/mg). RAW 264.7 murine macrophage cells were pretreated with 100–200 μg/mL of SPL extracts and 20 μM of dexamethasone, and inflammation was stimulated by lipopolysaccharide (LPS, 100 ng/mL) treatment for 24 h. In LPS-treated cells, prostaglandin E2 production and COX-2 expression were not downregulated by pretreatment of SPL extracts. However, SPL pretreated cells showed significant suppression of nitric oxide (NO), TNF-α, and IL-1β levels under the LPS-induced inflammatory condition. In addition, SPL extracts induced an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells through suppression of NF-κB nuclear translocation, IKK-α and IκB-α phosphorylation, and iNOS expression. These results indicate that SPL extract can be utilized as a functional food ingredient.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12151
Author(s):  
Wilaiwan Senghoi ◽  
Wiyada Kwanhian Klangbud

Nipa palm vinegar (NPV) made from the sap of nipa palm (Nypa fruticans Wurmb.) has long been used as a local food seasoning and folk medicine. This study compared the bioactive compounds, antioxidant, in vitro anti-inflammatory and antimicrobial activities of three NPVs obtained from different plantations based on varied soil and water salinity levels, including fresh water NPV, brackish water NPV and saline water NPV. The analysis results revealed that total phenolic content of saline water NPV had statistically significantly lower than both fresh water and brackish water NPV (p < 0.0001). Furthermore percentage of acetic acid in brackish water NPV had statistically significantly lower than both fresh water and saline water. NPV (p = 0.002). Nevertheless, total flavonoid and pH, were not significantly different (p = 0.144 and 0.066, respectively). The antioxidant activities using three ABTS, DPPH and FRAP methods displayed similar patterns, in which saline water NPV showed the highest antioxidant activities, followed by brackish water and fresh water NPV, respectively. Antimicrobial activity was examined for seven enteropathogenic bacteria. The tested NPVs were found inhibitive against all test cultures with a minimum inhibitory concentration (MIC) of ≤ 7.8 µL/mL. The cytotoxicity of the NPV obtained from different plantations by MTT assay revealed low cytotoxicity. Anti-inflammatory activity was also carried out through the inhibition of nitric oxide production. The fresh water NPV exhibited the highest anti-inflammatory activity with IC50 17.59 ± 0.17 µL/mL, followed by saline and brackish water NPV with IC50 18.12 ± 0.49 and 28.29 ± 2.64 µL/mL, respectively. The findings indicated that NPV from different soil salinities could potentially be natural functional food and developed to antimicrobial and anti-inflammatory medicinal agents with safety.


Sign in / Sign up

Export Citation Format

Share Document