scholarly journals Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5062 ◽  
Author(s):  
Liam J. Hawkins ◽  
Rasha Al-attar ◽  
Kenneth B. Storey

Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.

2019 ◽  
Vol 21 (1) ◽  
pp. 167 ◽  
Author(s):  
Isiaka Ibrahim Muhammad ◽  
Sze Ling Kong ◽  
Siti Nor Akmar Abdullah ◽  
Umaiyal Munusamy

The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hee Jung Choi ◽  
So Dam Jin ◽  
Deivendran Rengaraj ◽  
Jin Hwa Kim ◽  
Bertrand Pain ◽  
...  

Abstract Background NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. Results We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5′ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG. Conclusions We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 542
Author(s):  
Magdalena Regina Kubiak ◽  
Michał Wojciech Szcześniak ◽  
Izabela Makałowska

Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.


2008 ◽  
Vol 36 (4) ◽  
pp. 758-765 ◽  
Author(s):  
M. Madan Babu

In recent years, a number of technical and experimental advances have allowed us to obtain an unprecedented amount of information about living systems on a genomic scale. Although the complete genomes of many organisms are available due to the progress made in sequencing technology, the challenge to understand how the individual genes are regulated within the cell remains. Here, I provide an overview of current computational methods to investigate transcriptional regulation. I will first discuss how representing protein–DNA interactions as a network provides us with a conceptual framework to understand the organization of regulatory interactions in an organism. I will then describe methods to predict transcription factors and cis-regulatory elements using information such as sequence, structure and evolutionary conservation. Finally, I will discuss approaches to infer genome-scale transcriptional regulatory networks using experimentally characterized interactions from model organisms and by reverse-engineering regulatory interactions that makes use of gene expression data and genomewide location data. The methods summarized here can be exploited to discover previously uncharacterized transcriptional pathways in organisms whose genome sequence is known. In addition, such a framework and approach can be invaluable to investigate transcriptional regulation in complex microbial communities such as the human gut flora or populations of emerging pathogens. Apart from these medical applications, the concepts and methods discussed can be used to understand the combinatorial logic of transcriptional regulation and can be exploited in biotechnological applications, such as in synthetic biology experiments aimed at engineering regulatory circuits for various purposes.


Author(s):  
Nawrah Khader ◽  
Virlana M Shchuka ◽  
Oksana Shynlova ◽  
Jennifer A Mitchell

Abstract The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for fetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1 (AP-1), progesterone receptors (PRs), estrogen receptors (ERs), and nuclear factor kappa B (NF-κB), as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour- associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Huang ◽  
Zhinuo Huang ◽  
Ruifang Ma ◽  
Jialu Chen ◽  
Zhijun Zhang ◽  
...  

AbstractHeat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response–associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 276-280 ◽  
Author(s):  
Cindy N. Roy

Abstract Inflammation arising from various etiologies, including infection, autoimmune disorders, chronic diseases, and aging, can promote anemia. The anemia of inflammation (AI) is most often normocytic and normochromic and is usually mild. Characteristic changes in systemic iron handling, erythrocyte production, and erythrocyte life span all contribute to AI. The preferred treatment is directed at the underlying disease. However, when the inflammatory insult is intractable, or the cause has not been diagnosed, there are limited options for treatment of AI. Because anemia is a comorbid condition that is associated with poor outcomes in various chronic disease states, understanding its pathogenesis and developing new tools for its treatment should remain a priority. Hepcidin antimicrobial peptide has taken center stage in recent years as a potent modulator of iron availability. As the technology for quantitative hepcidin analysis improves, hepcidin's role in various disease states is also being revealed. Recent insights concerning the regulatory pathways that modify hepcidin expression have identified novel targets for drug development. As the field advances with such therapeutics, the analysis of the impact of normalized hemoglobin on disease outcomes will confirm whether anemia is a reversible independent contributor to the morbidity and mortality associated with inflammatory diseases.


2015 ◽  
Vol 112 (23) ◽  
pp. 7327-7332 ◽  
Author(s):  
Tomasz Kurcon ◽  
Zhongyin Liu ◽  
Anika V. Paradkar ◽  
Christopher A. Vaiana ◽  
Sujeethraj Koppolu ◽  
...  

Glycosylation, the most abundant posttranslational modification, holds an unprecedented capacity for altering biological function. Our ability to harness glycosylation as a means to control biological systems is hampered by our inability to pinpoint the specific glycans and corresponding biosynthetic enzymes underlying a biological process. Herein we identify glycosylation enzymes acting as regulatory elements within a pathway using microRNA (miRNA) as a proxy. Leveraging the target network of the miRNA-200 family (miR-200f), regulators of epithelial-to-mesenchymal transition (EMT), we pinpoint genes encoding multiple promesenchymal glycosylation enzymes (glycogenes). We focus on three enzymes, beta-1,3-glucosyltransferase (B3GLCT), beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), and (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5), encoding glycans that are difficult to analyze by traditional methods. Silencing these glycogenes phenocopied the effect of miR-200f, inducing mesenchymal-to-epithelial transition. In addition, all three are up-regulated in TGF-β–induced EMT, suggesting tight integration within the EMT-signaling network. Our work indicates that miRNA can act as a relatively simple proxy to decrypt which glycogenes, including those encoding difficult-to-analyze structures (e.g., proteoglycans, glycolipids), are functionally important in a biological pathway, setting the stage for the rapid identification of glycosylation enzymes driving disease states.


1983 ◽  
Vol 3 (10) ◽  
pp. 1834-1845
Author(s):  
G M Gilmartin ◽  
J T Parsons

Transcriptional regulatory elements within the Rous sarcoma virus long terminal repeat were examined by the construction of a series of deletions and small insertions within the U3 region of the long terminal repeat. The analysis of these mutations in chicken embryo cells and COS cells permitted the identification of important transcriptional regulatory elements. Sequences within the region 31 to 18 base pairs upstream of the RNA cap site (-31 to -18), encompassing a TATA box-like sequence, function in the selection of the correct site of transcription initiation and, in addition, augment the efficiency of transcription. These sequences are essential for virus replication. Sequences within the region -79 to -59, overlapping a CAAT box-like sequence, are not required for virus replication and have no obvious effect on viral RNA transcription in the presence of an intact TATA box. However, in mutants lacking a functional TATA sequence, mutations in this region serve to decrease the efficiency of correct transcriptional initiation events.


Sign in / Sign up

Export Citation Format

Share Document