Faculty Opinions recommendation of Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression.

Author(s):  
Cheng-Ming Chiang
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5203 ◽  
Author(s):  
Mohammad Faujul Kabir ◽  
Johari Mohd Ali ◽  
Onn Haji Hashim

BackgroundWe have previously reported anticancer activities ofMelicope ptelefolia(MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.MethodsHCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).ResultsMP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.DiscussionThe present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.


1993 ◽  
Vol 13 (6) ◽  
pp. 3577-3587 ◽  
Author(s):  
E A Musgrove ◽  
J A Hamilton ◽  
C S Lee ◽  
K J Sweeney ◽  
C K Watts ◽  
...  

Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.


2016 ◽  
Vol 74 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Handan Kayhan ◽  
Meric Arda Esmekaya ◽  
Atiye Seda Yar Saglam ◽  
Mehmed Zahid Tuysuz ◽  
Ayşe Gulnihal Canseven ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2811-2811
Author(s):  
Carolina Terragna ◽  
Sandra Durante ◽  
Daniel Remondini ◽  
Giovanni Martinelli ◽  
Francesca Patriarca ◽  
...  

Abstract Abstract 2811 Poster Board II-787 Introduction The recurrent translocation t(4;14)(p16;q32) occurs in less than 20% of patients with newly diagnosed Multiple Myeloma (MM) and is associated with a poor clinical outcome following either conventional or high-dose chemotherapy. Recently, it has been reported that patients carrying t(4;14) are prognostically heterogeneous and that the novel agents bortezomib and lenalidomide may overcome the poor prognosis related to this cytogenetic abnormality. In the present study, we analyzed the gene expression profile of patients who carried or not t(4;14) and were primarily treated with a bortezomib-based regimen. Patients and methods Two hundred thirty six patients with MM who received a combination of bortezomib-thalidomide-dexamethasone (VTD) as first-line therapy were evaluated for the presence at diagnosis of t(4;14). Of these, 41 patients (17.3%) were t(4;14) positive. On an intention-to-treat basis, the rate of CR and near CR (nCR) to VTD induction therapy among patients carrying t(4;14) was 41%, a value higher than the 29% observed among t(4;14) negative patients. In 218 patients for whom data on t(4;14), del(13q) and del(17p) were available, the differential gene expression of CD138+ enriched plasma cells was evaluated by means of expression microarray using the Affymetrix platform. The analysis was performed in t(4;14) negative patients and patients carrying t(4;14), either alone or combined with other abnormalities; t(4;14) negative patients included those with del(13q) alone and with any of these abnormalities. Results In 27 patients, t(4;14) was associated with either del(13q) (24 patients) or del(17p) (3 patients); the remaining 14 patients carried t(4;14) alone. The expression profiles of patients carrying either t(4;14) alone or t(4;14) combined with del(13q) significantly clustered apart when compared with those of cytogenetic negative patients. Similarly, the expression profiles of patients with del(13) alone clustered with those of cytogenetic negative patients. De-regulated expression of similar molecular pathways was demonstrated in patients carrying t(4;14) alone or combined with del(13q). Thus, the analysis of gene expression profiles according to response or no response to VTD was performed in two subgroups of patients, including those carrying t(4;14) alone or combined with del(13q) and those carrying either del(13q) alone or without cytogenetic abnormalities. By comparing the lists of genes differentially expressed (P '0.05) in patients who responded (e.g. those who achieved CR+nCR) and failed to respond (NR) to VTD according to the presence or absence of t(4;14), we found that the differential expression of 3719 genes characterized CR+nCR vs NR patients in the t(4;14) positive subgroup. At the opposite, the differential expression of 3182 genes characterized CR+nCR vs NR patients in the t(4;14) negative subgroup. 271 genes which were common to the two groups of genes were excluded from the list of genes found to be differentially expressed in t(4;14) positive patients who responded to VTD. Among these patients, we observed the de-regulated expression of genes involved in cell cycle progression (e.g. MDM2, CDK6 and SMAD2), Wnt signalling pathway (e.g. FZD7, WNT10A, MMP7,WNT2B, WNT6, WNT9A and DAAM2), and Hedgehog signalling pathway (GAS1, STK36 and GLI1). Overall, genes involved in cell cycle progression resulted over-expressed, thus suggesting a more aggressive phenotype of t(4;14) positive plasma cells of responder patients; nevertheless, the overall down-regulation of genes involved in Wnt and Hedgehog signalling pathways (known to be involved in the maintenance of a putative tumoral stem cell compartment) might mitigate this phenotype and predispose t(4;14) positive plasma cells to more favourably respond to VTD induction therapy. Supported by: BolognAIL, Fondazione Carisbo, Progetto di Ricerca Finalizzata (M.C). Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document