scholarly journals Do fish get wasted? Assessing the influence of effluents on parasitic infection of wild fish

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5956 ◽  
Author(s):  
Christyn Bailey ◽  
Aurélie Rubin ◽  
Nicole Strepparava ◽  
Helmut Segner ◽  
Jean-François Rubin ◽  
...  

Many ecosystems are influenced simultaneously by multiple stressors. One important environmental stressor is aquatic pollution via wastewater treatment plant (WWTP) effluents. WWTP effluents may contribute to eutrophication or contain anthropogenic contaminants that directly and/or indirectly influence aquatic wildlife. Both eutrophication and exposure to anthropogenic contaminants may affect the dynamics of fish-parasite systems. With this in mind, we studied the impact of WWTP effluents on infection of brown trout by the parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). PKD is associated with the long-term decline of wild brown trout (Salmo trutta) populations in Switzerland. We investigated PKD infection of brown trout at two adjacent sites (≈400 m apart) of a Swiss river. The sites are similar in terms of ecology except that one site receives WWTP effluents. We evaluated the hypothesis that fish inhabiting the effluent site will show greater susceptibility to PKD in terms of prevalence and disease outcome. We assessed susceptibility by (i) infection prevalence, (ii) parasite intensity, (iii) host health in terms of pathology, and (iv) estimated apparent survival rate. At different time points during the study, significant differences between sites concerning all measured parameters were found, thus providing evidence of the influence of effluents on parasitic infection of fish in our study system. However, from these findings we cannot determine if the effluent has a direct influence on the fish host via altering its ability to manage the parasite, or indirectly on the parasite or the invertebrate host via increasing bryozoa (the invertebrate host) reproduction. On a final note, the WWTP adhered to all national guidelines and the effluent only resulted in a minor water quality reduction assessed via standardized methods in this study. Thus, we provide evidence that even a subtle decrease in water quality, resulting in small-scale pollution can have consequences for wildlife.


2018 ◽  
Vol 6 (2) ◽  
pp. 12
Author(s):  
Dipitseng Manamela ◽  
Omotayo Awofolu

This article investigates the impact of anthropogenic activities on an important surface water from physico-chemical, chemical and microbial perspectives. The surface water, referred to as Blesbokspruit is in the West Rand District of South Africa. Potential impactors include wastewater treatment plant, mines, farmlands and informal settlements. Water samples were collected from nine purposively selected sampling points and analysed in 2014. The mean values of analysed variables across sampling sites and periods ranged from pH: 7.4-8.4; EC: 93.0 - 146.6 mS/m; TSS: 11.3 – 39.0 mg/L; TDS: 590.3 - 1020.3 mg/L; COD: 15.6- 34.8 mg/L. Those for anions varied from NO3-: 0.2- 2.1 (mg/L) N; PO43- : 0.4-0.9 mg/L and SO42-: 118.6 - 379.5 mg/L. The metallic variables ranged from As: 0.01-0.06 mg/L; Cd: 0.02-0.06 mg/L; Fe: 0.04-0.73 mg/L; Cu: 0.02 – 0.05 mg/L and Zn: 0.05 – 0.15 mg/L. The Faecal coliform varied from 15.9-16878.5 cfu/100 ml; Total coliform: 92.9-430294 cfu/100 ml and HPC from 4322.5-39776 cfu/1ml. Detection of toxic metals and pathogenic organisms above target safety limits indicate unsuitability of the water for domestic use with impact on the health of aquatic ecosystem. The study generally revealed the impact of anthropogenic activities on the surface water quality.



2020 ◽  
Vol 12 (20) ◽  
pp. 8670
Author(s):  
Svein Jakob Saltveit ◽  
Åge Brabrand ◽  
Ana Juárez ◽  
Morten Stickler ◽  
Bjørn Otto Dønnum

The Norwegian electrical energy supply system is based on hydropower. The now deregulated energy market has led to increased use of hydropeaking production, leading to greater fluctuations in discharge and water levels below hydropower stations. The power station HOL 1, with an outlet to the Storåne River, is a large hydropeaking facility. With over 300 rapid flow increases and decreases per year since 2012, it is a river subjected to frequent hydropeaking. To quantify the stranding risk downstream of the power plant, the effect of a series of different turbine shutdown scenarios was simulated in an earlier study. The residual flow of 6 m3·s−1 and a full production of 66 m3·s−1 were considered as the baselines for the calculation of dewatered areas. A three-year study of juvenile fish density both upstream as a reference and downstream of the power plant was undertaken. There were very low densities or even an absence of brown trout (Salmo trutta) older than young-of-the-year (YoY) below the outlet of the power station, despite high densities of YoY in previous years. This is probably due to the large and rapid changes in flow below the power station. Hydropeaking has less impact on the earliest life stages of brown trout during spring and summer, as well as on spawning and egg development during winter. This is attributed spawning in late autumn occurring at a low flow seldom reached during hydropeaking. The high survival of YoY during the first summer and early autumn is likely due to a lower frequency of hydropeaking and higher residual flows, leaving a larger wetted area.



Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1965 ◽  
Author(s):  
Skoczko ◽  
Szatyłowicz

The aim of the study was the assessment of corrosivity and aggressiveness for boiler feed water. The negative effects of water corrosivity and aggressiveness may include silting up of the steel water supply system and the destruction of boiler equipment touched or washed by such water. They may cause the whole industrial production system to fail or be destroyed. That is why it was important to reach a high water purification level, including the calculation of water aggressiveness and corrosivity indicators. The carried out test showed that the simple system used before the modernization of the industrial water treatment plant is not sufficient to reach clean and stable water. The authors proposed modernization, including additional processes to improve boiler water quality, and designed new devices for water treatment. As a result of the new idea, groundwater taken as raw water was treated in individual and complex processes, such as pre-aeration, filtration, ion exchange (cation and anion exchange resigns), extra aeration, and extra degassing. The conducted research included chemical analyses of raw and treated water. In the conducted studies, the indirect method of water aggressiveness and corrosivity assessment was applied using mathematical calculation of the Langelier Saturation Index (LSI), the Ryznar Stability Index (RI), the Larson–Skold Index (LI), and the Singley Index (SI). The results proved that the new proposed processes for the boiler feed water treatment station allow reaching a high water quality and low level of water aggressiveness and corrosion.



2012 ◽  
Vol 7 (2) ◽  
Author(s):  
Christopher C. Boyd ◽  
Steven J. Duranceau

A pilot test program was conducted to evaluate methods for maintaining the productivity of a hollow fiber ultrafiltration membrane operating at constant flux values of 49.2 and 62.3 gallons/ft2-day. The ultrafiltration pilot filtered settled water from a conventional surface water treatment plant in Florida. The testing assessed the impact of different chemical maintenance protocols on UF membrane performance. Seasonal variations in water quality necessitated changes in the type and combination of cleaning agents used to maintain membrane performance. Sodium hypochlorite, citric acid and sodium hydroxide were used during pilot testing as the fouling characteristics of the water changed with time. Pilot results were used to develop alternative chemically enhanced backwash strategies that varied with seasonally-impacted changes in feed water quality. Citric acid, with a target pH of <3, was found to be effective in August and September; whereas, a combination of citric acid and high pH sodium hydroxide chemically enhanced backwashes successfully maintained performance between November, 2010 and May, 2011.



2018 ◽  
Vol 22 (2) ◽  
pp. 175-182
Author(s):  
Anuradha Rai ◽  
Archana Niraula ◽  
Payaswini Ghimire ◽  
Aastha Pandey ◽  
Anu Gurung ◽  
...  

The study was conducted to assess the impacts of trout farming on water quality using macro invertebrates as bio-indicators. Two trout farms were selected for the study, viz., Gandaki Trout Farm (GTF) in Kaski district and Fall & Trout Fish Farm (FTF) in Nuwakot district. Reference and impacted sites were selected in each trout farms from where macro invertebrates were collected and physico-chemical parameters were measured. Sorensen’s Index and Multiple Site Similarity Index were calculated to compare the macro-invertebrate assemblages between the impact and the reference sites. Water quality classes were also calculated using macro invertebrate-based tool, NEPBIOS/ASPT scores. Altogether 24 families of macro invertebrates were observed at GTF and 12 families at FTF. The Sorensen’s Similarity Index was greater than 0.5 between reference and impacted sites at GTF; whereas it was only 0.28 at FTF indicating comparatively low level of similarity. In addition, Multiple Site Similarity Index (0.64) at GTF also indicated high similarity between the macro invertebrate assemblages. Reference sites showed higher scores with higher diversity of macro invertebrates. Both farms had suitable water quality for trout (dissolved oxygen and temperature) and most of the physico-chemical parameters did not show significant differences except pH and turbidity at GTF probably due to small scale operation and production. Journal of Institute of Science and TechnologyVolume 22, Issue 2, January 2018, Page: 175-182



Hydrobiologia ◽  
2014 ◽  
Vol 744 (1) ◽  
pp. 223-233 ◽  
Author(s):  
Trygve Hesthagen ◽  
Odd T. Sandlund ◽  
Anders G. Finstad ◽  
Bjørn O. Johnsen


2013 ◽  
Vol 12 (1) ◽  
pp. 196-209 ◽  
Author(s):  
H. S. Lim ◽  
L. Y. Lee ◽  
S. E. Bramono

This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.



2007 ◽  
Vol preprint (2008) ◽  
pp. 1
Author(s):  
Heloise Tarrant ◽  
Geriasimos Mousakitis ◽  
Suzanne Wylde ◽  
Nicholas Tattersall ◽  
Anne Lyons ◽  
...  


2015 ◽  
Vol 46 (4) ◽  
pp. 291-335 ◽  
Author(s):  
M. Pivokonsky ◽  
J. Naceradska ◽  
I. Kopecka ◽  
M. Baresova ◽  
B. Jefferson ◽  
...  


2016 ◽  
Vol 73 (12) ◽  
pp. 1759-1769 ◽  
Author(s):  
Elvira de Eyto ◽  
Catherine Dalton ◽  
Mary Dillane ◽  
Eleanor Jennings ◽  
Philip McGinnity ◽  
...  

Reduction of freshwater habitat quality due to land use change can have major impacts on diadromous fish. Partitioning this impact from other potential drivers, such as changing marine conditions and climate, is hampered by a lack of long-term data sets. Here, four decades of data were used to assess the impact of land use change on Salmo salar and anadromous Salmo trutta in the Burrishoole catchment, Ireland, one of the few index sites for diadromous fish in the North Atlantic. Land use change was found to have no significant impact on the freshwater survival of either salmon or trout. However, climate impacted significantly on the survival of salmon and trout in fresh water, with poor survival in years with wetter, warmer winters, coinciding with positive North Atlantic Oscillation values. Additionally, cold springs were associated with higher survival in trout. The addition of hatchery fish into the salmon spawning cohort coincided with low freshwater survival. Our results highlight the necessity for a broad ecosystem approach in any conservation effort of these species.



Sign in / Sign up

Export Citation Format

Share Document