scholarly journals Analysis of the Cause of Suffocation Resulting from Leakage in Carbon Dioxide Fire Extinguishing Systems

2021 ◽  
Vol 35 (1) ◽  
pp. 78-84
Author(s):  
Ho-Jung Kang ◽  
Chae-Chil Koo ◽  
Ki-Hyuk Jung ◽  
Jae-Wook Choi

The safety of carbon dioxide fire extinguishing facilities is studied through a fundamental case analysis of leakage accidents in carbon dioxide fire extinguishing facilities. In Korea, since 2001, there have been 11 accidents caused by leaks from carbon dioxide fire extinguishing facilities, killing 9 people and injuring more than 60 others. Recently, three subcontractors inhaled CO<sub>2</sub> gas from a transportation passage outside a collection chamber, killing two of them and injuring the other. This incident brought social attention to the CO<sub>2</sub> fire extinguishing facility in the first basement of S Electronics. In this study, we analyze the cause of the accident (e.g., pressure and temperature changes in the carbon dioxide leakage process) using a one-dimensional transient model, the effects of oxygen and CO<sub>2</sub> concentration at the location of the incident, and that these results can be used as basic data to prevent suffocation disaster in carbon dioxide fire extinguishing facilities.

2008 ◽  
Vol 45 (03) ◽  
pp. 879-887 ◽  
Author(s):  
Nader Ebrahimi

Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 154-155
Author(s):  
Katherine Vande Pol ◽  
Naomi Cooper ◽  
Andres Tolosa ◽  
Michael Ellis ◽  
Richard Gates ◽  
...  

Abstract Piglets often experience hypothermia early after birth. Previous research has suggested that drying piglets and administration of oxygen (a potential treatment for asphyxiation) at birth may increase post-natal rectal temperatures. The objective of this study was to determine the effects of drying and administering oxygen at birth on piglet rectal temperature over the first 24 h after birth. The study, conducted at a commercial facility, used a CRD with 42 sows/litters randomly allotted at start of farrowing to 3 treatments (applied at birth): Control (no drying or oxygenation); Dried (using a cellulose-based desiccant); Dried+Oxygen [dried and placed in a chamber (40% oxygen) for 20 min]. At birth, piglets were weighed and uniquely identified. Rectal temperature was measured at 0, 20, 30, 45, 60, 120, and 1440 min after birth. Data were analyzed using PROC MIXED of SAS. Litter was the experimental unit; piglet was a subsample of litter. The statistical model included effects of treatment, time of measurement, and the interaction. Both the Dried and Dried+Oxygen treatments had greater (P &lt; 0.05) rectal temperatures than the Control between 20 and 120 min. However, the Dried+Oxygen treatment had lower (P &lt; 0.05) rectal temperatures than the Dried treatment between 20 and 60 minutes. Temperatures at 1440 min were lower (P &lt; 0.05) for the Dried+Oxygen than the other treatments; however, differences were small. In conclusion, drying piglets at birth increased rectal temperatures over the first 2 h after birth. The combination of drying piglets at birth and placement in an oxygen chamber for 20 min was less effective at moderating post-natal temperature changes than drying alone. Further research on piglet oxygenation is necessary to understand the reason for these reduced temperatures, and whether this treatment affects pre-weaning mortality. This research was funded by the National Pork Board.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


2013 ◽  
Vol 634-638 ◽  
pp. 3688-3695 ◽  
Author(s):  
Yang Xiao ◽  
Shu Gang Li ◽  
Jun Deng ◽  
Xu Wang

In China, as popularizing the technology of fully mechanized top-coal mining and increasing the strength and depth of mining, the gutter-up gob can be formed. But the work of fire preventing and extinguishing for its coal spontaneous combustion is more complexity and difficulty. In this paper, based on geology parameters and mining practice for 93up12 fully mechanized top-coal caving face in Nantun coalmine, the form and character of gutter-up gob are analyzed. According to the hidden danger of high temperature for spontaneous combustion in the gob, we adopt the comprehension technologies of fire extinguishing and preventing which include sealing air-leakage, grouting, and injecting compound gel with fly-ash, foam of retarding oxidation, liquid carbon dioxide, and gas of nitrogen. By putting in practice the pre-controlling technology in gutter-up gob and monitoring data of target gases, it obtains a good effect and ensures the safety in production of the fully-mechanized top-coal caving face.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


1944 ◽  
Vol 22b (5) ◽  
pp. 140-153 ◽  
Author(s):  
R. Y. Stanier ◽  
Sybil B. Fratkin

Aerobacter aerogenes, Aerobacillus polymyxa, and Aeromonas hydrophila, representatives of the three genera characterized by a butanediol fermentation, can all oxidize 2,3-butanediol under aerobic conditions. The configuration of the 2,3-butanediol has considerable bearing on its decomposability: Aerobacter aerogenes is inactive on the l-isomer, but attacks both meso- and d-isomers; Aeromonas hydrophila attacks the meso-isomer but not the l- and probably not the d-isomer; Aerobacillus polymyxa can oxidize both l- and meso-2,3-butanediol, but the rate with the former is many times greater than with the latter. Aerobacter aerogenes oxidizes both 2,3-butanediol and acetoin to carbon dioxide and water, a large part of the substrate being simultaneously assimilated. The other two organisms oxidize 2,3-butanediol to acetoin, but can further oxidize the acetoin thus formed only very slowly, if at all. Both Aerobacter aerogenes and Aerobacillus polymyxa are unable to attack 1,3-butanediol, 2-methyl-1,2-propanediol and 1,2-ethancdiol. However they can oxidize 1,2-propanediol to acetol.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


2007 ◽  
Vol 544-545 ◽  
pp. 55-58
Author(s):  
Eiji Watanabe ◽  
Mitsuharu Fukaya ◽  
Hiroshi Taoda

The influence of the titania photocatalyst particle of the nanometer region on the human being and biology’s to be doubted. Removing the uneasiness will expand further uses for the photocatalyst nanoparticle. Then, we attempted to examine the effect of several titania photocatalyst nanoparticles to the artificial skin like the human body under the UV and visible light irradiation conditions. The decomposition degree of the artificial skin was evaluated from the monitoring of the amount of carbon dioxide generated from them by the titania photocatalyst nanoparticle activity. Under the UV irradiation condition, it was almost found the carbon dioxide emergence from the artificial skin by the activity of the titania photocatalyst nanoparticle. On the other hand, under visible light condition it was mostly detected.


2015 ◽  
Vol 28 (1) ◽  
pp. 77-84
Author(s):  
Mey de ◽  
Mariusz Felczak ◽  
Bogusław Więcek

Cooling of heat dissipating components has become an important topic in the last decades. Sometimes a simple solution is possible, such as placing the critical component closer to the fan outlet. On the other hand this component will heat the air which has to cool the other components further away from the fan outlet. If a substrate bearing a one dimensional array of heat dissipating components, is cooled by forced convection only, an integral equation relating temperature and power is obtained. The forced convection will be modelled by a simple analytical wake function. It will be demonstrated that the integral equation can be solved analytically using fractional calculus.


Sign in / Sign up

Export Citation Format

Share Document