scholarly journals Genetic Background of Variable Gibberellin Production in the Fusarium Fujikuroi Species Complex

2021 ◽  
Vol 9 (0) ◽  
pp. 32-42
Author(s):  
WanXue Bao ◽  
Haruhisa Suga
2008 ◽  
Vol 74 (24) ◽  
pp. 7790-7801 ◽  
Author(s):  
Christiane Bömke ◽  
Maria C. Rojas ◽  
Peter Hedden ◽  
Bettina Tudzynski

ABSTRACT Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to Fusarium fujikuroi (G. fujikuroi MP-C) and Fusarium konzum (MP-I), although most members of the G. fujikuroi species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in F. verticillioides (MP-A) is due to the loss of a majority of the GA gene cluster as found in F. fujikuroi. The remaining part of the cluster consists of the full-length F. verticillioides des gene (Fvdes), encoding the GA4 desaturase, and the coding region of FvP450-4, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of F. fujikuroi. The GA production capacity of F. verticillioides was restored by transforming a cosmid with the entire GA gene cluster from F. fujikuroi, indicating the existence of an active regulation system in F. verticillioides. Furthermore, the GA4 desaturase gene des from F. verticillioides encodes an active enzyme which was able to restore the GA production in a corresponding des deletion mutant of F. fujikuroi.


2005 ◽  
Vol 71 (10) ◽  
pp. 6014-6025 ◽  
Author(s):  
S. Malonek ◽  
M. C. Rojas ◽  
P. Hedden ◽  
P. Hopkins ◽  
B. Tudzynski

ABSTRACT Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5′ noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.


2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Haruhisa Suga ◽  
Mitsuhiro Arai ◽  
Emi Fukasawa ◽  
Keiichi Motohashi ◽  
Hiroyuki Nakagawa ◽  
...  

ABSTRACTFusarium fujikuroiis a pathogenic fungus that infects rice. It produces several important mycotoxins, such as fumonisins. Fumonisin production has been detected in strains of maize, strawberry, and wheat, whereas it has not been detected in strains from rice seedlings infested with bakanae disease in Japan. We investigated the genetic relationships, pathogenicity, and resistance to a fungicide, thiophanate-methyl (TM), in 51 fumonisin-producing strains and 44 nonproducing strains. Phylogenetic analyses based on amplified fragment length polymorphism (AFLP) markers and two specific genes (a combined sequence of translation elongation factor 1α [TEF1α] and RNA polymerase II second-largest subunit [RPB2]) indicated differential clustering between the fumonisin-producing and -nonproducing strains. One of the AFLP markers, EATMCAY107, was specifically present in the fumonisin-producing strains. A specific single nucleotide polymorphism (SNP) between the fumonisin-producing and nonproducing strains was also detected inRPB2, in addition to an SNP previously found inTEF1α. Gibberellin production was higher in the nonproducing than in the producing strains according to anin vitroassay, and the nonproducing strains had the strongest pathogenicity with regard to rice seedlings. TM resistance was closely correlated with the cluster of fumonisin-nonproducing strains. The results indicate that intraspecific evolution in JapaneseF. fujikuroiis associated with fumonisin production and pathogenicity. Two subgroups of JapaneseF. fujikuroi, designated G group and F group, were distinguished based on phylogenetic differences and the high production of gibberellin and fumonisin, respectively.IMPORTANCEFusarium fujikuroiis a pathogenic fungus that causes rice bakanae disease. Historically, this pathogen has been known asFusarium moniliforme, along with many other species based on a broad species concept. Gibberellin, which is currently known as a plant hormone, is a virulence factor ofF. fujikuroi. Fumonisin is a carcinogenic mycotoxin posing a serious threat to food and feed safety. Although it has been confirmed thatF. fujikuroiproduces gibberellin and fumonisin, production varies among strains, and individual production has been obscured by the traditional appellation ofF. moniliforme, difficulties in species identification, and variation in the assays used to determine the production of these secondary metabolites. In this study, we discovered two phylogenetic subgroups associated with fumonisin and gibberellin production in JapaneseF. fujikuroi.


2021 ◽  
Vol 7 (9) ◽  
pp. 784
Author(s):  
Valeria Tava ◽  
Anna Prigitano ◽  
Paolo Cortesi ◽  
Maria Carmela Esposto ◽  
Matias Pasquali

Fusarium musae belongs to the Fusarium fujikuroi species complex. It causes crown rot disease in banana but also keratitis and skin infections as well as systemic infections in immunocompromised patients. Antifungal treatments in clinical and agricultural settings rely mostly on molecules belonging to the azole class. Given the potential risk of pathogen spread from food to clinical settings, the goal of the work was to define the level of susceptibility to different azoles of a worldwide population of F. musae. Eight fungicides used in agriculture and five antifungals used in clinical settings (4 azoles and amphotericin B) were tested using the CLSI (Clinical and Laboratory Standards Institute) protocol methodology on 19 F. musae strains collected from both infected patients and bananas. The level of susceptibility to the different active molecules was not dependent on the source of isolation with the exception of fenbuconazole and difenoconazole which had a higher efficiency on banana-isolated strains. Minimal inhibitory concentrations (MICs) of the different molecules ranged from 0.12–0.25 mg/L for prochloraz to more than 16 mg/L for tetraconazole and fenbuconazole. Compared to the F. verticillioides, F. musae MICs were higher suggesting the importance of monitoring the potential future spread of this species also in clinical settings.


2020 ◽  
Author(s):  
Camila Primieri Nicolli ◽  
Miriam Haidukowskic ◽  
Antonia Susca ◽  
Larissa Bitencourt Gomes ◽  
Antonio Logrieco ◽  
...  

Fusarium fujikuroi species complex (FFSC) species are commonly encountered infecting rice, but knowledge of the diversity and toxigenic potential of the species is lacking in Brazil, the largest rice-producing country outside Asia. One hundred FFSC isolates obtained from national rice were identified using morphology and phylogeny of TEF, CAL and TUB genes. Eight previously known and one new phylogenetic species were identified. Three species accounted for around 60% of the strains: F. fujikuroi (n = 23), F. proliferatum (n = 22) and F. verticillioides (n = 16). The less frequent species were F. volatile (n = 8), F. anthophilum (n = 6), F. pseudocircinatum (n = 4), F. sterilihyphosum (n = 2) and F. begoniae (n = 1). The new Fusarium sp. was represented by 18 isolates. All species produced at least one of the analyzed mycotoxins [beauvericin (BEA), fumonisins (FBs), moniliformin (MON) and enniatins (ENNs)]. BEA was produced by all species but F. verticillioides. The FBs (mainly FB1) were produced mostly by F. fujikuroi, F. proliferatum and F. verticillioides. F. begoniae and F. verticillioides did not produce ENNs and F. sterilihyphosum and F. begoniae did no produce MON, while the other species produced MON and ENNs. Our results contribute new knowledge of the diversity, geographical distribution and hosts of FFSC species.


2019 ◽  
Vol 14 (5) ◽  
pp. 175
Author(s):  
Okky Setyawati Dharmaputra ◽  
Sri Listiyowati ◽  
Ira Zahara Nurwulansari

Diversity of Postharvest Fungi on Shallot Bulbs Variety Bima BrebesIn Indonesia, shallot (Allium ascalonicum) is horticultural main commodity after hot pepper. Significant yield losses can be caused by postharvest fungi infection. Research on the diversity of postharvest fungi on shallot bulbs has been conducted in some countries, unfortunately little is done in Indonesia. The study was aimed to obtain information on the diversity of postharvest fungi infecting shallot bulbs variety Bima Brebes from several traditional markets in Bogor City. Shallot bulbs were collected in January and February 2016. The study consisted of fungal isolation from shallot bulbs, fungal pathogenicity test, and identification of pathogenic fungi based on morphological and molecular characteristics. Morphology identification was based on the color of fungal colony, growth pattern, as well as somatic and reproduction structures. Several species of pathogenic fungi were successfully identified from shallot bulbs i.e. Alternaria alternata, Aspergillus niger, Colletotrichum gloeosporioides species complex, Fusarium fujikuroi species complex, F. oxysporum, F. solani, Penicillium citrinum and P. pinophilum.  Among these fungi, the highest pathogenicity was shown by C.  gloeosporioides species complex.


Sign in / Sign up

Export Citation Format

Share Document