scholarly journals Effect of Fat Content and Storage Temperature on the Growth and Survival Kinetics of Pathogenic Microorganisms in Milk and Ready to Eat (RTE) Quail Eggs

2014 ◽  
Vol 30 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Young-Mi Ko ◽  
Soo-Hyeon Hong ◽  
Guen-Cheol Park ◽  
Yu-Jin Na ◽  
Jin-San Moon ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
pp. 37
Author(s):  
Elsera Br Tarigan ◽  
Edi Wardiana ◽  
Handi Supriadi

<p><em>Coffee is a beverage that is widely consumed around the world. Proper packaging and storage temperature may extend shelf life of ground coffee. The study aimed to analyze the shelf life of ground Arabica coffee stored in different packaging types and temperature, conducted at smallholder coffee plantations in Garut Regency and the Integrated Laboratory of Indonesian Industrial and Beverage Crops Research Institute, Sukabumi, from June to August 2018. A completely randomized design in factorial was used with 3 factors and 2 replications. The first factor was the packaging type  which consisted of 3 types: thick alumunium  foil 65</em><em>m</em><em> (AF65), thick alumunium  foil 130</em><em>m</em><em> (AF130), and thick lamination 114</em><em>m</em><em> (L144). The second factor was the storage temperature which consisted of 3 levels: 25 <sup>o</sup>C, 35 <sup>o</sup>C, and 45 <sup>o</sup>C, while the third factor was the storage period which consisted of 5 levels: coffee unstored, and coffee stored for 2 weeks, 4 weeks, 6 weeks, and 8 weeks. The variables observed were the water and fat content, and the analysis of shelf life was carried out using the ASLT (Accelerated Shelf Life Test) method. The results showed that during storage, the water content increased, whereas the fat content decreased. Fat content is a critical variable in determining the shelf life of coffee. The coffee in AF130 packaging has longer shelf life than in AF65 and L144. To extend the shelf life of coffee packaged in AF130 and L144 is best kept at 45<sup> o</sup>C whereas coffee in AF65 packaging  is ideally at 25<sup> o</sup>C.</em></p>


2011 ◽  
Vol 74 (10) ◽  
pp. 1670-1675 ◽  
Author(s):  
GARRY MENZ ◽  
PETER ALDRED ◽  
FRANK VRIESEKOOP

This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the “as received” value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.


1999 ◽  
Vol 45 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Jeffrey J Semanchek ◽  
David A Golden ◽  
Robert C Williams

The effect of atmospheric composition and storage temperature on growth and survival of uninjured and sublethally heat-injured Escherichia coli O157:H7, inoculated onto brain heart infusion agar containing 0.3% beef extract (BEM), was determined. BEM plates were packaged in barrier bags in air, 100% CO2, 100% N2, 20% CO2 : 80% N2, and vacuum and were stored at 4, 10, and 37°C for up to 20 days. Package atmosphere and inoculum status (i.e., uninjured or heat-injured) influenced (P < 0.01) growth and survival of E. coli O157:H7 stored at all test temperatures. Growth of heat-injured E. coli O157:H7 was slower (P < 0.01) than uninjured E. coli O157:H7 stored at 37°C. At 37°C, uninjured E. coli O157:H7 reached stationary phase growth earlier than heat-injured populations. Uninjured E. coli O157:H7 grew during 10 days of storage at 10°C, while heat-injured populations declined during 20 days of storage at 10°C. Uninjured E. coli O157:H7 stored at 10°C reached stationary phase growth within approximately 10 days in all packaging atmospheres except CO2. Populations of uninjured and heat-injured E. coli O157:H7 declined throughout storage for 20 days at 4°C. Survival of uninjured populations stored at 4°C, as well as heat-injured populations stored at 4 and 10°C, was enhanced in CO2 atmosphere. Survival of heat-injured E. coli O157:H7 at 4 and 10°C was not different (P > 0.05). Uninjured and heat-injured E. coli O157:H7 are able to survive at low temperatures in the modified atmospheres used in this study.Key words: E. coli O157:H7, sublethal injury, modified atmosphere packaging.


2018 ◽  
Vol 34 (5) ◽  
pp. 2229-2235 ◽  
Author(s):  
Antonio Zuorro ◽  
Roberto Lavecchia ◽  
Erenio González ◽  
Viatcheslav Kafarov

The stability of lycopene in two vegetable oils, sunflower seed oil (SSO) and grape seed oil (GSO), was investigated by analysing the carotenoid degradation kinetics in the temperature range of 10–40°C. A tomato oleoresin containing 6% (w/w) of lycopene was used to prepare lycopene-enriched oil samples. Analysis of kinetic data showed that lycopene degradation follows first-order kinetics, with an apparent activation energy of 70.7 kJ mol–1 in SSO and 69 kJ mol–1 in GSO. The estimated half-life of lycopene was found to depend on oil type and storage temperature. At 20°C, it varied between 59 and 122 days, while at 4°C it was comprised between 302 and 650 days. At all temperatures, lycopene was more stable in SSO than in GSO, which is likely due to the higher content of antioxidant compounds in SSO.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2339
Author(s):  
So-Yul Yun ◽  
Jee-Young Imm

Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.


Sign in / Sign up

Export Citation Format

Share Document