scholarly journals Seed priming with Salicylic Acid (SA) and Hydrogen Peroxide (H2O2) Improve Germination and Seedling Growth of Wheat (Triticum aestivum) under Salt Stress

Author(s):  
Shaila Shermin Tania ◽  
Md. Moklasur Rahaman ◽  
Farjana Rauf ◽  
Mehera Afroj Suborna ◽  
Muhammad Humayun Kabir ◽  
...  

Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance. Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance.

Author(s):  
MF Ghafoor ◽  
Q Ali ◽  
A Malik

The present research experiment was conducted in the greenhouse of the Institute of Molecular Biology and Biotechnology, The University of Lahore for determining the possible involvement of salicylic acid (SA) in seed priming and affects on the seedling growth and development under NaCl treatments in wheat variety ANAJ-2017, Shafaq-2006 and Galaxy-2013. The data was collected for various seedling traits and statistically analyzed, which revealed the significance of results for treatments, salt applications, genotypes and the interactions between salt treatments and genotypes. The lower coefficient of variation was recorded for all studied traits which revealed that there was consistency among the results for salicylic acid applications and salt or NaCl treatments. It was concluded from our study that the application of salicylic acid (SA) under salt (NaCl) stress conditions helps wheat seedlings to withstand and compete with stressful conditions. The study revealed that the seed priming with salicylic acid helps to improve root length, shoot length, seedling moisture percentage and fresh seedling weights. The application of NaCl caused to increase the root length, number of roots and shoot length of wheat while salicylic acid (SA) was applied in foliar spray. The use of water priming shows medium effects for the seedling growth of wheat under salt stress environmental conditions. The wheat variety Galaxy-2013 has shown good performance for most of the studied traits of seedlings under salt stress conditions. It was suggested from our study that the variety Galaxy-2013 may be used under salt stress conditions or salt affected soils to improve grain yield of wheat.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 647-650
Author(s):  
Xu-Wen Jiang ◽  
Cheng-Ran Zhang ◽  
Wei-Hua Wang ◽  
Guang-Hai Xu ◽  
Hai-Yan Zhang

The effects of CaCl2, GA3, and H2O2 priming on Isatis indigotica Fort. seed germination characteristics, seedling growth parameters, and antioxidant enzyme activities under salt stress were investigated. NaCl had an adverse effect on the germination and seedling performance of I. indigotica. However, these three priming agents alleviated salt stress by increasing the germination percentage, improving seed vigor, accelerating germination velocity, and establishing strong seedlings. The optimal concentrations were 15 g/L for CaCl2, 0.2 g/L for GA3, and 40 mm for H2O2. Seed priming treatments enhanced the activities of antioxidant enzymes in seedlings, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), under a salt environment, which reduced the oxidative injury caused by salt. Seed priming is a promising technique that can enhance the ability of I. indigotica seed germination when salt is present.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


2017 ◽  
Vol 5 (2) ◽  
pp. 169-176 ◽  
Author(s):  
SUMAN PANTOLA ◽  
KIRAN BARGALI ◽  
S.S. BARGALI ◽  
VIBHUTI VIBHUTI

Among abiotic stresses, drought and salinity are two major determinants due to high magnitude of their impact and wide occurrence. Salinity considerably limits the productivity of crops and thus, considered as the most destructive abiotic factor. In the present study, response of Macrotyloma uniflorum and Vigna mungo to salt (NaCl) stress imposed at germination and seedling growth stages was investigated. The aim of the study was identify the physiological and morphological responses of selected leguminous crop. Seeds were obtained from the healthy plants, surface sterilized and placed under six salt stress levels (0, 4, 8, 12, 16, 20 dsm-1). Complete randomized design with three replicates was used for this experiment and the experiments were conducted during the year 2015 in the glasshouse of Department of Botany, DSB, Campus, Kumaun University, Nainital. In comparison to Macrotyloma uniflorum (77%), higher germination percentage was observed in Vigna mungo (99%) at all salinity levels. In both the species, germination percentage and seedling growth decreased with the increase in salinity stress. Though Vigna mungo showed higher values for root (0.17 g) and shoot dry mass (0.27 g) the dry weight percentage reduction was higher in this species as compared to Macrotyloma uniflorum. Decrease in biomass of seedling with increasing salt stress indicated that the stress not only affected germination but also the growth of seedlings, which indicates that the synthetic ability of seed and biomass of the seedlings was also affected. Seed vigor index declined with the increase in salt concentrations. Outcomes from the study could be helpful in understanding the plant’s nature against different levels of salt stress and that could be economically exploited by various able agencies. At each salinity level, M. uniflorum showed higher salt tolerance index as compared to V. mungo so it can be cultivated in fields with salty soil.


2018 ◽  
Vol 47 (4) ◽  
pp. 831-837
Author(s):  
D. Udhaya Nandhini ◽  
E. Somasundaram

Effects of nod factors (lipo chitooligosaccharide) on seedling growth of maize under salt stress have been studied. The study was framed with seed priming using lipo chitooligosaccharide (LCO) a nod factor @ 4 ml/kg of seeds and without priming on maize seedling growth which was exposed to different levels of salinity (0, 2, 4, 6, 8 and 10 dS/m). Salinity negatively influenced the seedling growth of maize. However nod factor treated maize seedlings had relatively higher germination percentage, root length, shoot length, reducing sugars and amylase activity. Correlation analysis revealed positive relationships between seedling growth parameters. Thus, seed priming with nod factor (4 ml/kg) improved the resistance to salinity at seedling stage. NaCl concentrations restricted amylase enzyme activity and reducing sugar content in the germinating seeds. Priming of nod factor/LCO mitigated the restricted effects of salinity on amylase activity and reducing sugars.


2021 ◽  
Vol 9 (6) ◽  
pp. 759-769
Author(s):  
Mohammad Saidur Rhaman ◽  
Farjana Rauf ◽  
Shaila Shermin Tania ◽  
Md. Masudul Karim ◽  
Ashaduzzaman Sagar ◽  
...  

Low and uneven germination is a serious problem for the successful production of okra seedlings. Priming of seeds as well as supplementation of different plant growth regulators exhibited better response in successful seedling production which eventually results in higher yield. Therefore, the present study was conducted to evaluate the effects of seed priming and exogenous application of salicylic acid (SA) on okra seed germination and plant development. The okra seeds were primed by 1 mM and 2 mM of SA for 60 minutes whereas the seeds were washed several times with distilled water for the control treatment. Similar doses of SA have been exogenously sprayed to the 12 days okra seedlings for 4 days. The results of the study revealed that seed priming with SA enhanced germination percentage (GP), increased coleoptile length and weight, shoot and root length, and seed vigor index (SVI). Similarly, exogenous application of 1 mM SA increased relative water content (RWC), contents of chlorophyll a, chlorophyll b, total chlorophyll while a higher dose of SA (2 mM) degraded the leaf pigments. Supplementation of SA altered photosynthetic attributes, net photosynthetic (Pn) and transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency (WUE). Moreover, SA treatment reduced the time duration of flower bud initiation and days to first flowering and enhanced the yield per plant. The results of this study indicated that seed priming and exogenous application of SA enhanced germination and okra productivity by regulating RWC and photosynthetic attributes where 1 mM SA is more effective compared to 2 mM SA.


2014 ◽  
Vol 66 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Morteza Saberi ◽  
Farajollah Tamian

Abstract The objective of this study was to evaluate the effectiveness of seed priming in improving seed germination and seedling vigor of Vicia villosa under laboratory conditions. Chemical stimulators included: gibberel-lic acid (125,250 and 500 ppm), salicylic acid (100,200 and 300 mg/lit) and extract of Eucalyptus camaldulen-sis (0, 25, 50, 75 and 100 %). This experiment was carried out as factorial experiment based on a randomized completely design, with four replications. The results showed that Eucalyptus camaldulensis extract had in-hibitive effect on germination and early seedling growth of Vicia villosa. Early seedling growth of Vicia villosa increased by pretreatment of seeds in chemical stimulators so that the highest effect was observed in gibberellic acid (250 ppm). The chemical stimulators don’t have any effect on germination speed. Interaction effects of allelopathic and pretreatment with chemical stimulators were significance on germination percentage, root, shoot and plant length and seed vigor index.


2013 ◽  
Vol 5 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Ghasem PARMOON ◽  
Ali EBADI ◽  
Sodabeh JAHANBAKHSH ◽  
Mahdi DAVARI

Effects of seed priming and aging on some physiological characteristics of Milk thistle was studied in a factoral experiment based on Complete Randomized Design (CRD). Tratments were included hydro priming (using distilled water), halo priming (0, 1.5, 3, 4.5 and 6% KNO3) and accelerated aging (0, 2, 4 and 6 days under 45°C and 95% humidity) in three replications. Determined parameters were germination charactristics including germination percentage, daily germination speed, mean time of germination, seed vigor index, hypocutile length and hypocutile dry weight. Activity of catalase, peroxidase and polyphenol oxidase were determined at 12 hours after imbibition and seedling stage. According to results of this experiment, germination percentage, seed vigor and seedling growth of seeds were increased under all priming treatments. Improving the catalase and peroxidase activity led to decrease the aging damages. Germination characteristics were improved under both priming treatments at the beginning of germination as well as seedling growth. Polyphenol oxidase activity was increased in the pre-treated seeds but decreased in seedling growth stage. Aging treatments led to reduce the germination percentage, daily germination speed, seed vigor and seedling growth while the germination time was increased. Accelerated aging caused to reduce the germination rate and seedling growth of milk thistle that is probably due to increasing the lipid peroxidation, free radical increment and decreasing the antioxidants activity. The greatest and lowest antioxidants activity, the germination percentage, germination speed and seed vigor were respectively observed under priming using 3% KNO3 concentration and control seeds.


2007 ◽  
Vol 58 (8) ◽  
pp. 811 ◽  
Author(s):  
S. Zhang ◽  
J. Hu ◽  
Y. Zhang ◽  
X. J. Xie ◽  
Allen Knapp

Salt stress is an important constraint to lucerne (Medicago sativa L.) production in many parts of the world. Seeds of 3 lucerne varieties, cvv. Victoria, Golden Empress, and Victor, were used to investigate the effects of seed priming with 5 µm/L brassinolide on germination and seedling growth under a high level of salt stress (13.6 dS/m NaCl solution). The results showed that germination percentage, germination index, and vigour index of lucerne seeds primed with brassinolide were significantly higher than those of the non-primed seeds under salinity stress in each variety. Seed priming with brassinolide significantly increased the shoot fresh weight, shoot dry weight, and root dry weight in 2 varieties, and significantly increased the root length and root vigour in each variety. It also significantly increased the activities of antioxidant enzymes, peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), in Victoria and Victor seedlings. During seedling growth, the primed seeds significantly reduced the malondialdehyde (MDA) accumulation. This suggests that priming lucerne seed with brassinolide at a suitable concentration can improve germination and seedling growth under high-saline soils.


Author(s):  
Muhammad Abdus Sobahan

Seed priming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. The effect of seed priming with proline on germination and seedling growth of mungbean (Vigna radiata L.) under salt stress was investigated. The experiment carried out in completely randomized design with three replications in May 2018 at the Research Laboratory of the School of Agriculture and Rural Development, Bangladesh Open University, Gazipur, Bangladesh. Salt stress at 5 dSm-1 decreased seed germination percentage, plumule length, radicle length, plumule fresh weight, radicle fresh weight and seed vigour index compared to control. Seed priming with proline increased germination percentage (53.84%), plumule length, radicle length, plumule fresh weight, radicle fresh weight and seed vigour index under salt stress. The results suggested that seed priming with proline could effectively alleviate the inhibitory effects of salt stress on seed germination and seedling growth of mungbean. South Asian J. Agric., 7(1&2): 15-18


Sign in / Sign up

Export Citation Format

Share Document