scholarly journals In vitro Cytotoxic and Genotoxic Effects of Methanol and Aqueous Extracts of Gymnosporia Montana Plant

Author(s):  
Nishat Ansari ◽  
Divya Chandel

Introduction: Gymnosporia montana Benth. is a medicinal herb which has been valued in Ayurvedic medicine for its hepatoprotective effect. The plant has been studied for its pharmacological, antimicrobial, and antioxidant properties, but there are no reports on its genotoxicity. Aim: Hence, in the present study, two extracts of G. montana (70% methanolic and aqueous) at different concentrations were evaluated for the in vitro cytotoxicity and genotoxicity in Human peripheral blood lymphocyte cultures (PBLC) since these are well-established techniques for the analysis of the potentially mutagenic and carcinogenic chemicals. Methodology: The 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT), Mitotic index (MI), Sister-chromatid exchanges (SCEs), Cell cycle proliferative index (CCPI), Average generation time (AGT) and Population doubling time (PDT) were scored in cultures set up from 10 different healthy donors. The treatment of the cell culture was done employing different extracts of G. montana at three concentrations (1.78µg/mL, 3.57µg/mL and 7.14µg/mL) with control and positive control (Ethyl methanesulfonate [EMS (1.93 mM)]). Results: The MTT results showed the cytotoxic effect in a concentration-dependent manner in both the methanol and aqueous extract and the IC50 value of methanol and aqueous extract was found to be 2.63 µg/mL and 3.63 µg/mL respectively.  The MI (p<.001) and CCPI (p<.05) in both the extracts showed significant values at higher concentration, but at lower and mid concentrations both the extracts were non-significant and the total SCEs, AGT and PDT in all the concentrations showed non-significant results when compared with the control. Conclusion: These results indicate that the G. montana plant extracts at lower two concentrations showed no cytotoxicity and genotoxicity effects in cultured human peripheral blood lymphocytes. Therefore, we suggest that the plant extract is safe for use at the lower concentrations in traditional medicine.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Suaib Luqman ◽  
Suchita Srivastava ◽  
Ritesh Kumar ◽  
Anil Kumar Maurya ◽  
Debabrata Chanda

We have investigated effect ofMoringa oleiferaleaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties usingin vitroandin vitroassays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in thein vitroassay compared to aqueous extract which showed higher potentialin vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract ofMoringa oleiferawhich adds one more positive attribute to its known pharmacological importance.


2021 ◽  
Vol 17 ◽  
Author(s):  
Brahim Asseli ◽  
Reguia Mahfoudi ◽  
Amar Djeridane ◽  
Mohamed Yousfi

Background: Research on medicinal plant antioxidants has emerged as a potential therapeutic to prevent free radical generated damage in the human body. Hammada elegans Botsch (popularly known as “Ajram”) is a xerophytic plant widely found in Laghouat region, but there are only a few reports about the biological or chemical properties of these species. Hence, the aim of this study is to investigate the antioxidant and the antihemolytic activities of hexanic, acetonic, methanolic and aqueous extracts of aerial parts of Algerian Hammada elegans Botsch by employing different in vitro assay systems. Methods: The total phenolic content, the flavonoid content and the condensed tannin amount were analyzed using Folin-Ciocalteu, aluminum chloride and vanillin assays, respectively. The in vitro antioxidant capacity of extracts was assessed by CUPRAC, iron chelating, ABTS•+and antihemolytic assays, and was expressed as EC50 values. Results: Among the analyzed extracts, the aqueous extract had the highest phenolic, flavonoid and tannin contents. Also, this extract displayed the highest antioxidant capacities compared to the other extracts and standards. Its EC50 value for ABTS radical-scavenging activity was 0.265 ± 0.003 mg/L. Moreover, this extract showed high iron (II) chelating ability (EC50 = 0.958 ± 0.001 mg/L), and good antioxidant activity in the cupric ion reducing activity (CUPRAC) in a concentration dependent manner (EC50 were 0.709 ± 0.002 mg/L). Additionally, this extract had the best antihemolytic activity against AAPH-induced hemolysis (EC50=0.090 ± 0.004 mg/L). Conclusion: Our study revealed that the aqueous extract of Hammada elegans Botsch, is a potential source of antioxidants which possess a high protective effect of membrane against free radical.


2021 ◽  
Vol 10 (4) ◽  
pp. 408-414
Author(s):  
Oluwaseun Ruth Olasehinde ◽  
Olakunle Bamikole Afolabi ◽  
Benjamin Olusola Omiyale ◽  
Oyindamola Adeniyi Olaoye

Introduction: Diabetes mellitus (DM) has been recognized as the seventh leading cause of global mortality; however, researchers seek alternative means to manage the menace. The current study sought to investigate antioxidant potentials, α-amylase, and α-glucosidase inhibitory activities of ethanolic extract of Moringa oleifera flower in vitro. Methods: Antioxidant properties of the extract were appraised by assessing its inhibition against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH•), and hydrogen peroxide (H2O2) free radicals, as well as ferric reducing antioxidant power (FRAP), the antidiabetic activity was evaluated by α-amylase and α-glucosidase inhibition.Results: In this study, ethanolic extract of M. oleifera flower demonstrated a significant (P < 0.05) inhibition against DPPH free radical (43.57–83.56%) in a concentration-dependent manner, while FRAP (101.76 ± 1.63 mg/100 g), OH• scavenging ability (71.62 ± 0.95 mg/100 g), and H2O2 free radical scavenging capacity (15.33 ± 1.20 mg/100 g) were also observed. In the same manner, ethanolic extract of M. oleifera flower revealed a significant (P < 0.05) inhibition against α-amylase (IC50= 37.63 mg/mL) and α-glucosidase activities (IC50= 38.30 mg/mL) in the presence of their respective substrates in a concentration-dependent manner in comparison with acarbose. Conclusion: Ethanoic extract of M. oleifera flower could be useful as an alternative phytotherapy in the management of DM, having shown a strong antioxidative capacity and substantial inhibition against the activities of key enzymes involved in carbohydrate hydrolysis in vitro.


Cytokine ◽  
2016 ◽  
Vol 88 ◽  
pp. 184-192 ◽  
Author(s):  
Hélio Galdino ◽  
Rodrigo Saar Gomes ◽  
Jessica Cristina dos Santos ◽  
Lívia Lara Pessoni ◽  
Anetícia Eduarda Maldaner ◽  
...  

1992 ◽  
Vol 282 (3) ◽  
pp. 625-629 ◽  
Author(s):  
J Staňková ◽  
M Rola-Pleszczynski

We have examined the effect of leukotriene B4 (LTB4), a potent lipid proinflammatory mediator, on the expression of the proto-oncogenes c-jun and c-fos. In addition, we looked at the modulation of nuclear factors binding specifically to the AP-1 element after LTB4 stimulation. LTB4 increased the expression of the c-fos gene in a time- and concentration-dependent manner. The c-jun mRNA, which is constitutively expressed in human peripheral-blood monocytes at relatively high levels, was also slightly augmented by LTB4, although to a much lower extent than c-fos. The kinetics of expression of the two genes were also slightly different, with c-fos mRNA reaching a peak at 15 min after stimulation and c-jun at 30 min. Both messages rapidly declined thereafter. Stability of the c-fos and c-jun mRNA was not affected by LTB4, as assessed after actinomycin D treatment. Nuclear transcription studies in vitro showed that LTB4 increased the transcription of the c-fos gene 7-fold and the c-jun gene 1.4-fold. Resting monocytes contained nuclear factors binding to the AP-1 element, but stimulation of monocytes with LTB4 induced greater AP-1-binding activity of nuclear proteins. These results indicate that LTB4 may regulate the production of different cytokines by modulating the yield and/or the function of transcription factors such as AP-1-binding proto-oncogene products.


1992 ◽  
Vol 12 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Antonella Favit ◽  
Ferdinando Nicoletti ◽  
Umberto Scapagnini ◽  
Pier Luigi Canonico

Ubiquinone is an endogenous quinone with pharmacological actions mainly related to its antioxidant properties. Here we report that ubiquinone protects cultured cerebellar granule cells against glutamate-induced neurotoxicity. In control cultures at 9 days of maturation in vitro (DIV), a 30-min exposure to 100 μ M glutamate induced neuronal degeneration, as reflected by the great percentage (>90%) of cells labeled with propidium iodide 24 h after the exposure. Glutamate-induced neuronal death was dramatically reduced in cultures treated daily with ubiquinone since the second DIV. In these cultures, glutamate failed to induce a “delayed” increase in the influx of 45Ca2+, an established parameter of excitotoxicity. Similarly, repeated addition of ubiquinone attenuated in a concentration-dependent manner the age-dependent degeneration of granule cells that is due to the toxic action of the endogenous glutamate progressively released into the medium. These results suggest that ubiquinone may be a useful drug in the therapy of acute and chronic neurodegenerative diseases related to hyperactivity of excitatory amino acid neurotransmission.


1995 ◽  
Vol 182 (6) ◽  
pp. 1785-1792 ◽  
Author(s):  
P Jeannin ◽  
Y Delneste ◽  
S Lecoanet-Henchoz ◽  
J F Gauchat ◽  
P Life ◽  
...  

N-Acetyl-L-cysteine (NAC) is an antioxidant precursor of intracellular glutathione (GSH), usually given in human as a mucolytic agent. In vitro, NAC and GSH have been shown to act on T cells by increasing interleukin (IL) 2 production, synthesis and turnover of IL-2 receptors, proliferation, cytotoxic properties, and resistance to apoptosis. We report here that NAC and GSH decrease in a dose-dependent manner human IL-4 production by stimulated peripheral blood T cells and by T helper (Th) 0- and Th2-like T cell clones. This effect was associated with a decrease in IL-4 messenger RNA transcription. In contrast, NAC and GSH had no effect on interferon gamma and increased IL-2 production and T cell proliferation. A functional consequence was the capacity of NAC and GSH to selectively decrease in a dose-dependent manner IL-4-induced immunoglobulin (Ig) E and IgG4 production by human peripheral blood mononuclear cells. Interestingly, NAC and GSH also acted directly on purified tonsillar B cells by decreasing the mature epsilon messenger RNA, hence decreasing IgE production. In contrast, IgA and IgM production were not affected. At the same time, B cell proliferation was increased in a dose-dependent manner. Not all antioxidants tested but only SH-bearing molecules mimicked these properties. Finally, when given orally to mice, NAC decreased both IgE and IgG1 antibody responses to ovalbumin. These results demonstrate that NAC, GSH, and other thiols may control the production of both the Th2-derived cytokine IL-4 and IL-4-induced Ig in vitro and in vivo.


2002 ◽  
Vol 10 (1) ◽  
pp. 19-23
Author(s):  
Marija Hatzistilianou ◽  
Soultana Hitoglou ◽  
Despina Gougoustamou ◽  
Alexandros Kotsis ◽  
Athanasios Kallinderes ◽  
...  

BACKGROUND: The purpose of the study was to evaluate the mode of action of different immunoregulatory drugs in lymphocyte proliferation and activation METHODS: The drugs studied were prednisolone (PRED), cyclosporin A (CsA) the recombination of PRED and CsA, L-asparaginase and cytosine-arabinose (ara-C). Peripheral blood lymphocytes from normal blood donors were stimulated by phytohemagglutinin (PHA). Lymphocytes proliferation and activation were determined by tritiated thymidine ([3H]TdR) incorporation secretion of interleukin-2, level of soluble interleukin-2 receptors in the supernatant of the culture medium, and immunophenotyping analysis of T lymphocyte subsets. RESULTS: Among PRED CsA and their combination, the strongest inhibition of cell proliferation was induced by PRED while L-asparaginase and ara-C inhibited PHA stimulated T cells proliferation in concentration and time dependent manner. Among PRED, CsA and their combination, CsA induced the greatest inhibition of IL-2 production. All the immunoregulatory drugs inhibited lymphocyte proliferation and expression of activation antigens. CONCLUSION: The immunoregulatory drugs inhibit both lymphocyte proliferation and activation but in a different way.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ganiyu Oboh ◽  
Ayodele J. Akinyemi ◽  
Olasunkanmi S. Omojokun ◽  
Idowu S. Oyeleye

Background. Cola acuminataseed, a commonly used stimulant in Nigeria, has been reportedly used for the management of neurodegenerative diseases in folklore without scientific basis. This study sought to investigate the anticholinesterase and antioxidant properties of aqueous extracts fromC. acuminataseedin vitro.Methodology.The aqueous extract ofC. acuminataseed was prepared (w/v) and its effect on acetylcholinesterase (AChE) and butyrylcholinesterase activities, as well as some prooxidant (FeSO4, sodium nitroprusside (SNP), and quinolinic acid (QA)) induced lipid peroxidation in rat brainin vitro, was investigated.Results.The results revealed thatC. acuminataseed extract inhibited AChE (IC50= 14.6μg/mL) and BChE (IC50= 96.2μg/mL) activities in a dose-dependent manner. Furthermore, incubation of rat’s brain homogenates with some prooxidants caused a significant increaseP<0.05in the brain malondialdehyde (MDA) content and inhibited MDA production dose-dependently and also exhibited further antioxidant properties as typified by their high radicals scavenging and Fe2+chelating abilities.Conclusion.Inhibition of AChE and BChE activities has been the primary treatment method for mild Alzheimer’s disease (AD). Therefore, one possible mechanism through which the seed exerts its neuroprotective properties is by inhibiting cholinesterase activities as well as preventing oxidative-stress-induced neurodegeneration. However, this is a preliminary study with possible physiological implications.


Sign in / Sign up

Export Citation Format

Share Document