scholarly journals Creep Velocity of Non-Spherical Gravel Particles in Mountainous Regions

Author(s):  
Anuradha Kumari ◽  
Akhilesh Kumar ◽  
P. V. Singh

The movement of sediment particles is governed by the relative magnitude of acting drag and the resistance offered by the particle. The magnitude of drag force that acts on a sediment particle depends on flow parameters as well as on the surface area of the particle exposed to flow. Similarly, the resistance offered by the particle depends on its weight and the surface area of the particle in contact with the stream bed. In the case of spherical particles, orientation does not play an important role, while in the case of non-spherical particles how particle orients itself play a vital role. Therefore, in the case of non-spherical particles, which is the real situation, the movement velocity of sediment particles will depend on their orientation. Numerous studies have been conducted for spherical particles but literature is lacking information for non-spherical particles. In this study, experiments were conducted on coarse solitary non-spherical gravel particles to observe their creep velocity with their changed orientations under varying flow conditions. The experimental finding unveiled that the creep velocity of these particles not only depended on the shape and size of the particles but also on their orientation relative to the flow direction. It was observed that for a particle of a given size, the orientation of the particle which leads to maximum exposed area i.e O2 orientation resulted in the highest creep velocity. The findings of the study have been illustrated with mathematical relationships and graphical representations for various combinations of input variables.

2021 ◽  
Vol 156 ◽  
pp. 105049
Author(s):  
Sangjin Han ◽  
Kye Sang Yoo ◽  
Daekeun Kim ◽  
Jinsoo Kim ◽  
Mohd Roslee Othman

2021 ◽  
Vol 5 (2) ◽  
pp. 63
Author(s):  
Niraj Kumbhare ◽  
Reza Moheimani ◽  
Hamid Dalir

Identifying residual stresses and the distortions in composite structures during the curing process plays a vital role in coming up with necessary compensations in the dimensions of mold or prototypes and having precise and optimized parts for the manufacturing and assembly of composite structures. This paper presents an investigation into process-induced shape deformations in composite parts and structures, as well as a comparison of the analysis results to finalize design parameters with a minimum of deformation. A Latin hypercube sampling (LHS) method was used to generate the required random points of the input variables. These variables were then executed with the Ansys Composite Cure Simulation (ACCS) tool, which is an advanced tool used to find stress and distortion values using a three-step analysis, including Ansys Composite PrepPost, transient thermal analysis, and static structural analysis. The deformation results were further utilized to find an optimum design to manufacture a complex composite structure with the compensated dimensions. The simulation results of the ACCS tool are expected to be used by common optimization techniques to finalize a prototype design so that it can reduce common manufacturing errors like warpage, spring-in, and distortion.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Manoj Pudukudy ◽  
Zahira Yaakob

AbstractMesoporous spinel Co3O4 nanosheets were synthesised via a simple sol-gel route using the Pluronic P123 triblock copolymer as the stabilising agent. Their structural, morphological, and textural properties were characterised. FTIR spectrum revealed the formation of cobalt oxide without any surface adsorbed impurities. Face centered cubic phase of spinel Co3O4 with the mean crystalline size of 26 nm was assigned by the X-ray diffraction analysis without the formation of other phases. Porous nanosheets and cave-like morphologies were identified from the scanning electron microscopy (SEM) images. Highly agglomerated more or less spherical particles with well separated lattice fringes, representing the oriented growth of nanocrystals, were noticed on the transmission electron microscopy photographs. Surface area analysis revealed that the spinel has high surface area of about 25 m2 g−1 with monomodal mesoporosity. The average pore size distribution was found to be about 15.8 nm. The as-prepared spinel photocatalyst showed a mild photocatalytic activity in the degradation of methylene blue (2.5 mg L−1) under UV light irradiation with air as the oxidising agent. Photocatalytic activity of the as-prepared reusable Co3O4 was found to be higher than that of the commercial spinel powder.


1996 ◽  
Vol 465 ◽  
Author(s):  
W. L. Ebert ◽  
S.-W. Tam

ABSTRACTWe have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 m−1 at 90°C in tuff groundwater at pH values near 12 are about 0.2,0.07, and 0.04 g/(m2•d) for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively.


Author(s):  
M. Pawlyta ◽  
B. Sobel ◽  
B. Liszka

Purpose: The purpose of this article is the development of quantitative methods for assessing the quality of nanocomposite materials used in fuel cells. Design/methodology/approach: latinum is the most commonly used catalyst in fuel cells, commonly in the form of nanoparticles deposited on the surface of carbon black. Due to the nanometric size of platinum particles, transmission electron microscopy can be applied to evaluate the produced catalysts. TEM image also allow to determinate the approximate value of the chemical specific surface area) of platinum nanoparticles, but only in case of spherical particles. Findings: In present work, taking into account additional assumptions resulting directly from the analysis of microscopic images, the method of estimation of the particle diameter and the chemical specific surface area for nonsymmetrical (elongated) nanoparticles is present. Research limitations/implications: The presented work presents a method for determining the specific surface of platinum, when their shape is elongated. It is worth noting that the modified formulas for determining the particle diameter and the value of the chemically active specific surface of the platinum nanoparticles of the elongated shape are equivalent to the formulas previously given for spherical particles, if the particle length and its diameter are equal. In this case, patterns for symmetric particles and more general (modified) patterns can be used interchangeably. Practical implications: Development of new and more effective catalysts for fuel cells. Originality/value: The significance of the presented work results from the possibility of using the described method in the catalyst studies during real catalytic processes. It allows comparing catalytic activity after the process, also in unusual conditions and in an aggressive environment, using minimal amounts of material.


2019 ◽  
Vol 966 ◽  
pp. 19-24
Author(s):  
Srie Muljani ◽  
Heru Setyawan ◽  
Ketut Sumada

The silica potassium humic substance (Si-K-HAs) composite have been produce by spray drying successfully. In the previous study the preparation of Si-K-HAs gel by precipitation method required the addition of acid so that Si-K-HAs gel product contains acid salts. This study was develope spray drying method in order to eliminate the use of acid. The mixture of potassium silicate, cellulose and humic potassium solution was mixed with varying volume ratios and flowed into a spray dryer to produce Si-K-HAs powder. The used of cellulose (CMC) in this study acts as a homogeneous agent so that silica and humic substance can be completely mixed at controlled viscosity. Si-K-HAs products were characterized by Scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and Surface area analytical (SAA). The result showed that the Si-K-HAs composite prepared by spray dryers have spherical particles, SiO2 in the range of 48-50%, K2O in the range of 49-50%. The present of cellulose caused the increasing of Si-K-HAs particle size e.g 17.30 μm prepared without CMC to 41.11 μm prepared with addition of 100g of CMC. The presence of cellulose can also increase the surface area of the spray-dried Si-K-HAs particles from 111.92 m2g-1; 163.241 m2g-1.


Author(s):  
Apostolos Damialis

We rigorously derive a weak form of the Lifshitz–Slyozov–Wagner equation as the homogenization limit of a Stefan-type problem describing reaction-controlled coarsening of a large number of small spherical particles. Moreover, we deduce that the effective mean-field description holds true in the particular limit of vanishing surface-area density of particles.


2021 ◽  
Vol 38 (12) ◽  
pp. 128701
Author(s):  
Qing Yang ◽  
Huan Liang ◽  
Rui Liu ◽  
Ke Chen ◽  
Fangfu Ye ◽  
...  

Abstract Topological edge flow and dissipationless odd viscosity are two remarkable features of chiral active fluids composed of active spinners. These features can significantly influence the dynamics of suspended passive particles and the interactions between the particles. By computer simulations, we investigate the transport phenomenon of anisotropic passive objects and the self-assembly behavior of passive spherical particles in the active spinner fluid. It is found that in confined systems, nonspherical passive objects can stably cling to boundary walls and are unidirectionally and robustly transported by edge flow of spinners. Furthermore, in an unconfined system, passive spherical particles are able to form stable clusters that spontaneously and unidirectionally rotate as a whole. In these phenomena, strong particle-wall and interparticle effective attractions play a vital role, which originate from spinner-mediated depletion-like interactions and can be largely enhanced by odd viscosity of spinner fluids. Our results thus provide new insight into the robust transport of cargoes and the nonequilibrium self-assembly of passive intruders.


2021 ◽  
pp. 1-36
Author(s):  
Shuo Mao ◽  
Ridge A. Sibold ◽  
Wing Ng ◽  
Zhigang LI ◽  
Bo Bai ◽  
...  

Abstract Nozzle guide vane platforms often employ complex cooling schemes to mitigate the ever-increasing thermal loads on endwall. This study analyzes, experimentally and numerically, and describes the effect of coolant to mainstream blowing ratio, momentum ratio and density ratio for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole purge cooling scheme. Nominal flow conditions were engine-representative and as follows: Maexit = 0.85, Reexit,Cax = 1.5×106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to the design condition and its upper extrema at M = 2.5 and 3.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR=1.2, representing typical experimental neglect of coolant density, and DR=1.95, representative of typical engine conditions. The results show that with a fixed coolant-to-mainstream blowing ratio, the density ratio plays a vital role in the coolant-mainstream mixing and the interaction between coolant and horseshoe vortex near the vane leading edge. A higher density ratio leads to a better coolant coverage immediately downstream of the cooling holes but exposes the in-passage endwall near the pressure side. It also causes the in-passage coolant coverage to decay at a higher rate in the flow direction. From the results gathered, both density ratio and blowing ratio should be considered for accurate testing, analysis, and prediction of purge jet cooling scheme performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. A. A. Mohammed ◽  
A. Salmiaton ◽  
W. A. K. G. Wan Azlina ◽  
M. S. Mohamad Amran ◽  
Y. H. Taufiq-Yap

Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites underwent two stages of decomposition during the calcination process. The X-ray diffraction and Fourier-transform infrared spectra analyses showed that thermal treatment of dolomite played a significant role in the disappearance of the CaMg(CO3)2phase, producing the MgO-CaO form of dolomite. The scanning electron microscopy microphotographs of dolomite indicated that the morphological properties were profoundly affected by the calcination process, which led to the formation of a highly porous surface with small spherical particles. In addition, the calcination of dolomite led to the elimination of carbon dioxide and increases in the values of the specific surface area and average pore diameter, as indicated by surface area analysis. The results showed that calcined Malaysian dolomites have great potential to be applied as tar-cracking catalysts in the biomass gasification process based on their favorable physical properties.


Sign in / Sign up

Export Citation Format

Share Document