scholarly journals Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. A. A. Mohammed ◽  
A. Salmiaton ◽  
W. A. K. G. Wan Azlina ◽  
M. S. Mohamad Amran ◽  
Y. H. Taufiq-Yap

Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites underwent two stages of decomposition during the calcination process. The X-ray diffraction and Fourier-transform infrared spectra analyses showed that thermal treatment of dolomite played a significant role in the disappearance of the CaMg(CO3)2phase, producing the MgO-CaO form of dolomite. The scanning electron microscopy microphotographs of dolomite indicated that the morphological properties were profoundly affected by the calcination process, which led to the formation of a highly porous surface with small spherical particles. In addition, the calcination of dolomite led to the elimination of carbon dioxide and increases in the values of the specific surface area and average pore diameter, as indicated by surface area analysis. The results showed that calcined Malaysian dolomites have great potential to be applied as tar-cracking catalysts in the biomass gasification process based on their favorable physical properties.

2018 ◽  
Vol 29 (6) ◽  
pp. 839-867 ◽  
Author(s):  
Ahsanullah Soomro ◽  
Shiyi Chen ◽  
Shiwei Ma ◽  
Wenguo Xiang

Tar content in gasification products is a serious problem for fuel gas utilization in downstream applications. Catalytic steam reforming of tar to syngas is a promising way for the removal of tar from the gas products. Nickel-based catalysts, dolomite, and olivine have been widely investigated for tar cracking and reforming by various researchers. This paper presents a review of biomass gasification, tar composition, and its elimination process by using the above three catalysts. This paper summarizes the knowledge in the published literature associated with tar elimination during the biomass gasification including discussion on the effects of different support, promoter on the catalytic performance. The aim of this paper is to collect information on the performance of above catalysts to make them accessible to readers within one paper. Comparative studies on these catalysts carried out by some researchers have also been presented here which show that the nickel-based catalyst is much more active than dolomite and olivine, but they are more expensive and can be also deactivated. Compared to olivine, the dolomite shows better catalytic performance with much higher gas yield and H2. Calcination of these catalysts improves the catalytic activities but the amount of coke deposited on the surface of the dolomite is reported higher than that of the olivine, which may be resulted from the different Fe amount of the catalyst.


2021 ◽  
Vol 156 ◽  
pp. 105049
Author(s):  
Sangjin Han ◽  
Kye Sang Yoo ◽  
Daekeun Kim ◽  
Jinsoo Kim ◽  
Mohd Roslee Othman

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1875
Author(s):  
Prashanth Reddy Buchireddy ◽  
Devin Peck ◽  
Mark Zappi ◽  
Ray Mark Bricka

Amongst the issues associated with the commercialization of biomass gasification, the presence of tars has been one of the most difficult aspects to address. Tars are an impurity generated from the gasifier and upon their condensation cause problems in downstream equipment including plugging, blockages, corrosion, and major catalyst deactivation. These problems lead to losses of efficiency as well as potential maintenance issues resulting from damaged processing units. Therefore, the removal of tars is necessary in order for the effective operation of a biomass gasification facility for the production of high-value fuel gas. The catalytic activity of montmorillonite and montmorillonite-supported nickel as tar removal catalysts will be investigated in this study. Ni-montmorillonite catalyst was prepared, characterized, and tested in a laboratory-scale reactor for its efficiency in reforming tars using naphthalene as a tar model compound. Efficacy of montmorillonite-supported nickel catalyst was tested as a function of nickel content, reaction temperature, steam-to-carbon ratio, and naphthalene loading. The results demonstrate that montmorillonite is catalytically active in removing naphthalene. Ni-montmorillonite had high activity towards naphthalene removal via steam reforming, with removal efficiencies greater than 99%. The activation energy was calculated for Ni-montmorillonite assuming first-order kinetics and was found to be 84.5 kJ/mole in accordance with the literature. Long-term activity tests were also conducted and showed that the catalyst was active with naphthalene removal efficiencies greater than 95% maintained over a 97-h test period. A little loss of activity was observed with a removal decrease from 97% to 95%. To investigate the decrease in catalytic activity, characterization of fresh and used catalyst samples was performed using thermogravimetric analysis, transmission electron microscopy, X-ray diffraction, and surface area analysis. The loss in activity was attributed to a decrease in catalyst surface area caused by nickel sintering and coke formation.


2021 ◽  
Author(s):  
Ibtihaj Khurram Faridi ◽  
Evangelos Tsotsas ◽  
Wolfram Heineken ◽  
Marcus Koegler ◽  
Abdolreza Kharaghani

2002 ◽  
Vol 20 (5) ◽  
pp. 467-484
Author(s):  
G.A. El-Shobaky ◽  
A.M. Turky ◽  
A.M. Ghozza

The effects of doping NiO and Co3O4 solids with cobalt and nickel species on their surface and catalytic properties were investigated. The amounts of dopant, in the form of the corresponding nitrate, were varied between 0.5–6.0 mol% cobalt ions and 2.0–6.0 mol% nickel ions. Pure and variously doped solids were subjected to thermal treatment at 300–700°C. The techniques employed were XRD, nitrogen adsorption at −196°C, decomposition of H2O2 at 30–50°C and estimation of the amount of surface excess oxygen on the variously prepared solids as determined by the hydrazine method. The results obtained revealed that the pure and variously doped NiO samples precalcined at 300°C consisted of a finely divided NiO phase having an average particle size of ca. 40 Å. Pure and variously doped Co3O4 specimens preheated at 500°C and 700°C were composed of a Co3O4 phase with a much bigger particle size (230 Å and 350 Å, respectively, for the solids precalcined at 500°C and 700°C). Doping of NiO followed by thermal treatment at 300°C and 500°C resulted in a measurable decrease in its BET surface area (19–23%), while doping of Co3O4 with nickel species followed by heating at 500°C and 700°C brought about a significant increase in its specific surface area (56–60%). Doping each of the NiO and Co3O4 solids with cobalt and nickel species greatly increased the amount of surface excess oxygen and effected a considerable increase in their catalytic activities. This increase was, however, much more pronounced in the case of NiO which attained a value of ca. 100-fold. Doping of NiO with cobalt species followed by thermal treatment at 300°C and 500°C decreased the activation energy (DE) of the catalyzed reaction to an extent proportional to the amount of dopant added. On the other hand, doping of Co3O4 with nickel species followed by thermal treatment at 500°C and 700°C did not change the value of DE. These results suggest that doping of Co3O4 with nickel species did not modify the mechanism of the catalyzed reaction but increased the concentration of catalytically active sites without changing their energetic nature.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2514-2519 ◽  
Author(s):  
JIN-BO CHENG ◽  
AI-DONG LI ◽  
QI-YUE SHAO ◽  
YUE-FENG TANG ◽  
DI WU

Ferroelectric nanocrystal powders of SrBi2Ta2O9 (SBT) have been first prepared by a polymerizable complex (PC) route. The bismuth powder, strontium carbonate, and water-soluble tantalum oxalate solution were used as starting materials. Thermal analyses (TGA and DSC), x-ray diffraction (XRD), transmission electron microscopy (TEM), and conventional BET method were explored to characterize the structure, morphology, and specific surface area of PC-derived SBT powders calcined at 500-850 °C. As control samples, SBT powders were also fabricated by metalorganic decomposition (MOD) method. The XRD and TEM results indicate that high pure and well crystalline powders can be obtained at 650 °C with a average size of 50 nm. The PC-derived powder has much larger surface area than MOD-derived powder. The BET value of PC and MOD powder at 750 °C for 2h is 6.7 and 1.5m2/g, respectively. The specific surface area of powder prepared by conventional solid-state reaction is quite low, typically less than 1.5m2/g. Therefore, the feasibility of the polymerizable complex route is demonstrated in the powder synthesis of SBT with large surface area.


2021 ◽  
Author(s):  
Prakash Parajuli ◽  
Sanjit Acharya ◽  
Julia Shamshina ◽  
Noureddine Abidi

Abstract In this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose solutions in the presence of salts. The specific focus of the study was evaluation of the effect of salts’ addition on the sol-gel transition of the cellulose solutions and on their ability to form monoliths, as well as evaluation of the morphology (e.g., specific surface area, pore characteristics, and microstructure) of aerocelluloses prepared from these solutions. The effect of the salt addition on the sol-gel transition of cellulose solutions was studied using rheology, and morphology of resultant aerogels was evaluated by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, while the salt influence on the aerocelluloses’ crystalline structure and thermal stability was evaluated using powder X-Ray Diffraction (pXRD) and Thermogravimetric Analysis (TGA), respectively. The study revealed that the effect of salts’ addition was dependent on the component ions and their concentration. The addition of salts in the amount below certain concentration limit significantly improved the ability of the cellulose solutions to form monoliths and reduced the sol-gel transition time. Salts of lower cationic radii had a greater effect on gelation. However, excessive amount of salts resulted in the formation of fragile monoliths or no formation of gels at all. Analysis of surface morphology demonstrated that the addition of salts resulted in a significant increase in porosity and specific surface area, with salts of lower cationic radii leading to aerogels with much larger (~1.5 and 1.6-fold for LiCl and MgCl2, respectively) specific surface area compared to aerocelluloses prepared with no added salt. Thus, by adding the appropriate salt into the cellulose solution prior to gelation, the properties of aerocelluloses that control material’s performance (specific surface area, density, and porosity) could be tailored for a specific application.


Author(s):  
S. Kaviya ◽  
R. M. Jayabalakrishnan ◽  
M. Maheswari ◽  
S. Selvakumar

The present study investigates the characterization of different coconut based low cost adsorbents like coconut shell biochar, zinc chloride impregnated coconut shell activated carbon, coir fibre and coir geotextile and their suitability characteristics as a filter bed in different wastewater treatment process. The characterization study helps to investigate their physical, chemical and morphological properties like proximate and ultimate analysis, iodine number, decolorizing power, SEM, Surface area using BET, Particle size and Zeta potential. The experiment results showed that among the different adsorbents activated carbon has high fixed carbon content (82.99 percent), more surface area (590.8 m2 g-1), low ash content (1.31 percent) with a decolorizing power of 240-300 mg g-1. The coir fibre and coir geotextile having neutral pH with negative surface charge easily adsorbs the positive cations from aqueous solutions at highest apparent density. The experimental findings suggest that the activated adsorbent which shows better results as an effective filter media for adsorption of organic compounds and pollutants from wastewater.


Sign in / Sign up

Export Citation Format

Share Document