scholarly journals Addressing Off-Centered Ball through Solder Paste Material Evaluation

Author(s):  
B. C. Bacquian ◽  
F. R. Gomez ◽  
E. Graycochea Jr. ◽  
N. Gomez

Stencil printing using solder paste material is one of the challenging processes in semiconductor assembly manufacturing. During evaluation of a semiconductor device, off-centered ball issue    was encountered. The study aimed to mitigate the off-centered ball issue at stencil printing  process by exploring the effect of different solder paste materials. Both solder paste materials  were cured using the same reflow condition. However, solder paste material 1 (S1) resulted  to cold solder joints while material 2 (S2) showed cured solder paste characteristic. With S2 material used in stencil printing, the off-centered ball occurrence was eventually eliminated. For future works, the solder paste material and configuration could be used for devices with similar requirement.

Author(s):  
Bryan Christian S. Bacquian ◽  
Frederick Ray I. Gomez ◽  
Edwin M. Graycochea Jr.

One of the challenging assembly processes in semiconductor manufacturing industry is stencil printing using solder paste as direct material. With this technology, some issues were encountered during the development phase of an advanced leadframe device and one of which is the solder ball misplace or off-centered ball. This paper, hence, focused on addressing the ball misplace issue at stencil printing process. Comprehensive parameter optimization particularly on the print speed and print force was employed to eliminate or significantly reduce the ball misplace defect at stencil printing process. With this process optimization and improvement, a reduction of around 96 percent ball misplace occurrence was achieved.


2017 ◽  
Vol 29 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Sai Srinivas Sriperumbudur ◽  
Michael Meilunas ◽  
Martin Anselm

Purpose Solder paste printing is the most common method for attaching surface mount devices to printed circuit boards (PCB), and it has been reported that a majority of all assembly defects occur during the stencil printing process. It is also recognized that the solder paste printing process is wholly responsible for the solder joint formation of leadless package technologies such as land grid array (LGA) and quad-flat no-lead (QFN) components and therefore is a determining factor in the long-term reliability of said devices. The aim of this experiment is to determine the acceptable lower limit for solder paste volume deposit tolerances during stencil printing process to ensure both good assembly yield and reliability expectations. Design/methodology/approach Stencils with modified aperture dimensions at particular locations for LGA and QFN package footprints were designed to vary the solder paste volume deposited during the stencil printing process. Solder paste volumes were measured using solder paste inspection system. Low volume solder paste deposits were generated using the modified stencil designs to evaluate assemble yield. Accelerated thermal cycling (ATC) was used to determine the reliability of the solder joints. Failure analysis was used to determine if the failure was attributed to the low paste volume locations. Findings Solder joints formed with nominal paste volume survived longer in ATC compared to intentionally low volume joints. Transfer efficiency numbers for both good assembly yield and good reliability are reported for LGA and QFN devices. A lower volume limit is reported for leadless devices that should not significantly affect yield and reliability in thermal cycling. Originality/value Very little literature is available on solder paste volume tolerance limits in terms of assembly yield and reliability. Manufacturers often use ±50 or ±30 per cent of stencil aperture volume with no evidence of its effectiveness in determining yield and reliability of the solder joints.


1999 ◽  
Author(s):  
Jianbiao Pan ◽  
Gregory L. Tonkay

Abstract Stencil printing has been the dominant method of solder deposition in surface mount assembly. With the development of advanced packaging technologies such as ball grid array (BGA) and flip chip on board (FCOB), stencil printing will continue to play an important role. However, the stencil printing process is not completely understood because 52–71 percent of fine and ultra-fine pitch surface mount assembly defects are printing process related (Clouthier, 1999). This paper proposes an analytical model of the solder paste deposition process during stencil printing. The model derives the relationship between the transfer ratio and the area ratio. The area ratio is recommended as a main indicator for determining the maximum stencil thickness. This model explains two experimental phenomena. One is that increasing stencil thickness does not necessarily lead to thicker deposits. The other is that perpendicular apertures print thicker than parallel apertures.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000671-000707
Author(s):  
Stephen Kenny ◽  
Sven Lamprecht ◽  
Kai Matejat ◽  
Bernd Roelfs

Electrolytic Solder Deposit for Current methods for the formation of pre-solder bumps for flip chip attachment use stencil printing techniques with an appropriate solder paste. The continuing trend towards increasing miniaturisation and the associated decrease in size of solder resist opening, SRO is causing production difficulties with the stencil printing process. Practical experience of production yields has shown that stencil printing will not be able to meet future requirements for solder bump pitch production below 0.15 mm for these applications. This paper describes a novel approach to replace the stencil printing process by use of an electrolytic deposition of solder. In contrast to stencil printing, use of electrolytic deposition techniques allows production of solder bumps with a pitch below 0.15 mm and with a SRO below 80 μm. Methods for production of electrolytic solder bumps based on pure tin as well as alloys of tin/copper and also tin/silver are shown and in particular a method to control the alloy concentration of electroplated tin/copper bumps. Test results with both alloy systems and also pure tin bumping are presented together with comparison of the advantages and disadvantages. The general advantages of replacement of stencil printing by electrolytic deposition of solder bumps are shown and in particular the improvement of bump reliability and the potential to significantly decrease costs by yield improvement.


2013 ◽  
Vol 25 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Yong‐Won Lee ◽  
Keun‐Soo Kim ◽  
Katsuaki Suganuma

PurposeThe purpose of this paper is to study the effect of the electropolishing time of stencil manufacturing parameters and solder‐mask definition methods of PCB pad design parameters on the performance of solder paste stencil printing process for the assembly of 01005 chip components.Design/methodology/approachDuring the study, two types of stencils were manufactured for the evaluations: electroformed stencils and electropolished laser‐cut stencils. The electroformed stencils were manufactured using the standard electroforming process and their use in the paste printing process was compared against the use of an electropolished laser‐cut stencil. The electropolishing performance of the laser‐cut stencil was evaluated twice at the following intervals: 100 s and 200 s. The performance of the laser‐cut stencil was also evaluated without electropolishing. An optimized process was established after the polished stencil apertures of the laser‐cut stencil were inspected. The performance evaluations were made by visually inspecting the quality of the post‐surface finishing for the aperture wall and the quality of that post‐surface finishing was further checked using a scanning electron microscope. A test board was used in a series of designed experiments to evaluate the solder paste printing process.FindingsThe results demonstrated that the length of the electropolishing time had a significant effect on the small stencil's aperture quality and the solder paste's stencil printing performance. In this study, the most effective electropolishing time was 100 s for a stencil thickness of 0.08 mm. The deposited solder paste thickness was significantly better for the enhanced laser‐cut stencil with electropolishing compared to the conventional electroformed stencils. In this printing‐focused work, print paste thickness measurements were also found to vary across different solder‐mask definition methods of printed circuit board pad designs with no change in the size of the stencil aperture. The highest paste value transfer consistently occurred with solder‐mask‐defined pads, when an electropolished laser‐cut stencil was used.Originality/valueDue to important improvements in the quality of the electropolished laser‐cut stencil, and based on the results of this experiment, the electropolished laser‐cut stencil is strongly recommended for the solder paste printing of fine‐pitch and miniature components, especially in comparison to the typical laser‐cut stencil. The advantages of implementing a 01005 chip component mass production assembly process include excellent solder paste release, increased solder volume, good manufacture‐ability, fast turnaround time, and greater cost saving opportunities.


2019 ◽  
Vol 102 (9-12) ◽  
pp. 3369-3379 ◽  
Author(s):  
M. S. Rusdi ◽  
M. Z. Abdullah ◽  
S. Chellvarajoo ◽  
M. S. Abdul Aziz ◽  
M. K. Abdullah ◽  
...  

2016 ◽  
Vol 2016 (1) ◽  
pp. 000667-000674
Author(s):  
Mark Whitmore ◽  
Jeff Schake

Abstract With the continual shrinking of electronic assembly form factors, designers are being forced towards smaller, more complex components with decreasing interconnection pitches. As a consequence, the Surface Mount assembly process is becoming increasingly challenged. For the stencil printing process, this means that historically accepted stencil aperture area ratio design rules, (which dictate what can or cannot be printed), need to be significantly pushed to extend the printing process for next generation ultra -fine pitch components. As a result, a major study has been undertaken looking at several different aspects of the stencil printing process, and their impact upon the assembly and reliability of 0.3mm pitch CSP components. In a preliminary test, stencil printing factors such as stencil aperture size and printing technology (standard squeegees vs ultrasonically aided active squeegees) were investigated. Data showed that the active squeegees provided a significantly larger process window. Subsequently, components were assembled using a range of solder paste volumes printed with both standard and active squeegee technology. The components assembled using an active squeegee process exhibited higher assembly yield, and also extended reliability when subjected to thermal cycling.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000502-000508 ◽  
Author(s):  
Mark Whitmore ◽  
Clive Ashmore

As electronics assemblies continue to shrink in form factor, forcing designers towards smaller components with decreasing pitches, the Surface Mount assembly process is becoming increasingly challenged. A new “active” squeegee printing process has been developed to assist in the stencil printing of solder pastes for next generation ultra fine pitch components such as 0.3mm pitch CSP’s. Results indicate that today’s accepted stencil area ratio rules, which govern solder paste transfer efficiency can be significantly pushed to extend stencil printing process capabilities to stencil apertures having area ratios as low as 0.4. Such a breakthrough will allow the printing of ultra fine pitch components and additionally will assist with heterogeneous assembly concerns, to satisfy up and coming mixed technology demands.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Xi ◽  
Jiangyou Yu ◽  
Le Cao ◽  
Xiaojiang Zheng ◽  
Jun Guo

Purpose Most solder paste printers are configured to periodically clean the stencil to maintain printing quality. However, a periodical cleaning control may result in excessive cleaning operations. The purpose of this paper is to develop a control method to schedule stencil cleaning operations appropriately. Design/methodology/approach A hybrid failure rate model of the stencil printing process with age reduction factor and failure rate increase factor is presented. A stencil cleaning policy based on system reliability is introduced. An optimization model used to derive the optimal stencil cleaning schedule is provided. Findings An aperiodic stencil cleaning control with good adaptability is achieved. A comparative analysis indicates that aperiodic control has better printing system reliability than traditional periodical control under the same cleaning resource consumption. Originality/value Periodical cleaning control commonly used in industrial printing process often results in excessive cleaning operations. By incorporating the printing system reliability, this paper develops an aperiodic stencil cleaning control method based on hybrid failure rate model of the stencil printing process. It helps to reduce unnecessary cleaning operations while keeping printing quality stable.


2002 ◽  
Vol 14 (1) ◽  
pp. 11-17 ◽  
Author(s):  
R. Durairaj ◽  
G.J. Jackson ◽  
N.N. Ekere ◽  
G. Glinski ◽  
C. Bailey

Sign in / Sign up

Export Citation Format

Share Document