Solder paste volume effects on assembly yield and reliability for bottom terminated components

2017 ◽  
Vol 29 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Sai Srinivas Sriperumbudur ◽  
Michael Meilunas ◽  
Martin Anselm

Purpose Solder paste printing is the most common method for attaching surface mount devices to printed circuit boards (PCB), and it has been reported that a majority of all assembly defects occur during the stencil printing process. It is also recognized that the solder paste printing process is wholly responsible for the solder joint formation of leadless package technologies such as land grid array (LGA) and quad-flat no-lead (QFN) components and therefore is a determining factor in the long-term reliability of said devices. The aim of this experiment is to determine the acceptable lower limit for solder paste volume deposit tolerances during stencil printing process to ensure both good assembly yield and reliability expectations. Design/methodology/approach Stencils with modified aperture dimensions at particular locations for LGA and QFN package footprints were designed to vary the solder paste volume deposited during the stencil printing process. Solder paste volumes were measured using solder paste inspection system. Low volume solder paste deposits were generated using the modified stencil designs to evaluate assemble yield. Accelerated thermal cycling (ATC) was used to determine the reliability of the solder joints. Failure analysis was used to determine if the failure was attributed to the low paste volume locations. Findings Solder joints formed with nominal paste volume survived longer in ATC compared to intentionally low volume joints. Transfer efficiency numbers for both good assembly yield and good reliability are reported for LGA and QFN devices. A lower volume limit is reported for leadless devices that should not significantly affect yield and reliability in thermal cycling. Originality/value Very little literature is available on solder paste volume tolerance limits in terms of assembly yield and reliability. Manufacturers often use ±50 or ±30 per cent of stencil aperture volume with no evidence of its effectiveness in determining yield and reliability of the solder joints.

2013 ◽  
Vol 25 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Yong‐Won Lee ◽  
Keun‐Soo Kim ◽  
Katsuaki Suganuma

PurposeThe purpose of this paper is to study the effect of the electropolishing time of stencil manufacturing parameters and solder‐mask definition methods of PCB pad design parameters on the performance of solder paste stencil printing process for the assembly of 01005 chip components.Design/methodology/approachDuring the study, two types of stencils were manufactured for the evaluations: electroformed stencils and electropolished laser‐cut stencils. The electroformed stencils were manufactured using the standard electroforming process and their use in the paste printing process was compared against the use of an electropolished laser‐cut stencil. The electropolishing performance of the laser‐cut stencil was evaluated twice at the following intervals: 100 s and 200 s. The performance of the laser‐cut stencil was also evaluated without electropolishing. An optimized process was established after the polished stencil apertures of the laser‐cut stencil were inspected. The performance evaluations were made by visually inspecting the quality of the post‐surface finishing for the aperture wall and the quality of that post‐surface finishing was further checked using a scanning electron microscope. A test board was used in a series of designed experiments to evaluate the solder paste printing process.FindingsThe results demonstrated that the length of the electropolishing time had a significant effect on the small stencil's aperture quality and the solder paste's stencil printing performance. In this study, the most effective electropolishing time was 100 s for a stencil thickness of 0.08 mm. The deposited solder paste thickness was significantly better for the enhanced laser‐cut stencil with electropolishing compared to the conventional electroformed stencils. In this printing‐focused work, print paste thickness measurements were also found to vary across different solder‐mask definition methods of printed circuit board pad designs with no change in the size of the stencil aperture. The highest paste value transfer consistently occurred with solder‐mask‐defined pads, when an electropolished laser‐cut stencil was used.Originality/valueDue to important improvements in the quality of the electropolished laser‐cut stencil, and based on the results of this experiment, the electropolished laser‐cut stencil is strongly recommended for the solder paste printing of fine‐pitch and miniature components, especially in comparison to the typical laser‐cut stencil. The advantages of implementing a 01005 chip component mass production assembly process include excellent solder paste release, increased solder volume, good manufacture‐ability, fast turnaround time, and greater cost saving opportunities.


2019 ◽  
Vol 31 (4) ◽  
pp. 233-239 ◽  
Author(s):  
JiangYou Yu ◽  
Le Cao ◽  
Hao Fu ◽  
Jun Guo

PurposeStencil cleaning is an important operation in solder paste printing process. Frequent cleaning may interrupt printing process and increase idle time, as well as loss for performing cleaning. This paper aims to propose a method to optimize the stencil cleaning time and reduce unnecessary cleaning operations and losses.Design/methodology/approachThis paper uses a discrete-time, discrete-state homogeneous Markov chain to model the stencil printing performance degradation process, and the quality loss during the stencil printing process is estimated based on this degradation model. A stencil cleaning decision model based on renewal reward theorem is established, and the optimal cleaning time is obtained through a balance between quality loss and the loss on idle time.FindingsA stencil cleaning decision model for solder paste printing is established, and numerical simulation results show that there exists an optimal stencil cleaning time which minimizes the long-term loss.Originality/valueStencil cleaning control is very important for solder paste printing. However, there are very few studies focusing on stencil cleaning control. This research contributes to developing a model to optimize the stencil cleaning time in solder paste printing process.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Xi ◽  
Jiangyou Yu ◽  
Le Cao ◽  
Xiaojiang Zheng ◽  
Jun Guo

Purpose Most solder paste printers are configured to periodically clean the stencil to maintain printing quality. However, a periodical cleaning control may result in excessive cleaning operations. The purpose of this paper is to develop a control method to schedule stencil cleaning operations appropriately. Design/methodology/approach A hybrid failure rate model of the stencil printing process with age reduction factor and failure rate increase factor is presented. A stencil cleaning policy based on system reliability is introduced. An optimization model used to derive the optimal stencil cleaning schedule is provided. Findings An aperiodic stencil cleaning control with good adaptability is achieved. A comparative analysis indicates that aperiodic control has better printing system reliability than traditional periodical control under the same cleaning resource consumption. Originality/value Periodical cleaning control commonly used in industrial printing process often results in excessive cleaning operations. By incorporating the printing system reliability, this paper develops an aperiodic stencil cleaning control method based on hybrid failure rate model of the stencil printing process. It helps to reduce unnecessary cleaning operations while keeping printing quality stable.


2018 ◽  
Vol 30 (4) ◽  
pp. 217-226 ◽  
Author(s):  
Chien-Yi Huang

Purpose This research aims to study the stencil printing process of the quad flat package (QFP) component with a pin pitch of 0.4 mm. After the optimization of the printing process, the desired inspection specification is determined to reduce the expected total process loss. Design/methodology/approach Static Taguchi parametric design is applied while considering the noise factors possibly affecting the printing quality in the production environment. The Taguchi quality loss function model is then proposed to evaluate the two types of inspection strategies. Findings The optimal parameter-level treatment for the solder paste printing process includes a squeegee pressure of 11 kg, a stencil snap-off of 0.14 mm, a cleaning frequency of the stencil once per printing and using an air gun after stencil wiping. The optimal upper and lower specification limits are 119.8 µm and 110.3 µm, respectively. Originality/value Noise factors in the production environment are considered to determine the optimal printing process. For specific components, the specification is established as a basis for subsequent processes or reworks.


Author(s):  
B. C. Bacquian ◽  
F. R. Gomez ◽  
E. Graycochea Jr. ◽  
N. Gomez

Stencil printing using solder paste material is one of the challenging processes in semiconductor assembly manufacturing. During evaluation of a semiconductor device, off-centered ball issue    was encountered. The study aimed to mitigate the off-centered ball issue at stencil printing  process by exploring the effect of different solder paste materials. Both solder paste materials  were cured using the same reflow condition. However, solder paste material 1 (S1) resulted  to cold solder joints while material 2 (S2) showed cured solder paste characteristic. With S2 material used in stencil printing, the off-centered ball occurrence was eventually eliminated. For future works, the solder paste material and configuration could be used for devices with similar requirement.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


1999 ◽  
Author(s):  
Jianbiao Pan ◽  
Gregory L. Tonkay

Abstract Stencil printing has been the dominant method of solder deposition in surface mount assembly. With the development of advanced packaging technologies such as ball grid array (BGA) and flip chip on board (FCOB), stencil printing will continue to play an important role. However, the stencil printing process is not completely understood because 52–71 percent of fine and ultra-fine pitch surface mount assembly defects are printing process related (Clouthier, 1999). This paper proposes an analytical model of the solder paste deposition process during stencil printing. The model derives the relationship between the transfer ratio and the area ratio. The area ratio is recommended as a main indicator for determining the maximum stencil thickness. This model explains two experimental phenomena. One is that increasing stencil thickness does not necessarily lead to thicker deposits. The other is that perpendicular apertures print thicker than parallel apertures.


2017 ◽  
Vol 29 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Barbara Dziurdzia ◽  
Janusz Mikolajek

Purpose The purpose of this paper is to evaluate selected methods of reduction voidings in lead-free solder joints underneath thermal pads of light-emitting diodes (LEDs), using X-ray inspection and Six Sigma methodology. Design/methodology/approach On the basis of cause and effect diagram for solder voiding, the potential causes of voids and influence of process variables on void formation were found. Three process variables were chosen: the type of reflow soldering, vacuum incorporation and the type of solder paste. Samples of LEDs were mounted with convection and vapour phase reflow soldering. Vacuum was incorporated into vapour phase soldering. Two types of solder pastes OM338PT and LFS-216LT were used. Algorithm incorporated into X-ray inspection system enabled to calculate the statistical distribution of LED thermal pad coverage and to find the process capability index (Cpk) of applied soldering techniques. Findings The evaluation of selected soldering processes of LEDs in respect of their thermal pad coverage and statistical Cpk indices is presented. Vapour-phase soldering with vacuum is capable (Cpk > 1) for OM338PT and LFS-216LT paste. Convection reflow without vacuum with LFS-216LT paste is also capable (Cpk = 1.1). Other technological soldering processes require improvements. Vacuum improves radically the capability of a reflow soldering for an LED assembly. When vacuum is not accessible, some improvement of capability to a lower extent is possible by an application of void-free solder pastes. Originality/value Six Sigma statistical methodology combined with X-ray diagnosis was used to check whether applied methods of void reduction underneath LED thermal pads are capable processes.


2018 ◽  
Vol 30 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Péter Martinek ◽  
Oliver Krammer

Purpose This paper aims to present a robust prediction method for estimating the quality of electronic products assembled with pin-in-paste soldering technology. A specific board quality factor was also defined which describes the expected yield of the board assembly. Design/methodology/approach Experiments were performed to obtain the required input data for developing a prediction method based on decision tree learning techniques. A Type 4 lead-free solder paste (particle size 20–38 µm) was deposited by stencil printing with different printing speeds (from 20 mm/s to 70 mm/s) into the through-holes (0.8 mm, 1 mm, 1.1 mm, 1.4 mm) of an FR4 board. Hole-filling was investigated with X-ray analyses. Three test cases were evaluated. Findings The optimal parameters of the algorithm were determined as: subsample is 0.5, learning rate is 0.001, maximum tree depth is 6 and boosting iteration is 10,000. The mean absolute error, root mean square error and mean absolute percentage error resulted in 0.024, 0.03 and 3.5, respectively, on average for the prediction of the hole-filling value, based on the printing speed and hole-diameter after optimisation. Our method is able to predict the hole-filling in pin-in-paste technology for different through-hole diameters. Originality/value No research works are available in current literature regarding machine learning techniques for pin-in-paste technology. Therefore, we decided to develop a method using decision tree learning techniques for supporting the design of the stencil printing process for through-hole components and pin-in-paste technology. The first pass yield of the assembly can be enhanced, and the reflow soldering failures of pin-in-paste technology can be significantly reduced.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000671-000707
Author(s):  
Stephen Kenny ◽  
Sven Lamprecht ◽  
Kai Matejat ◽  
Bernd Roelfs

Electrolytic Solder Deposit for Current methods for the formation of pre-solder bumps for flip chip attachment use stencil printing techniques with an appropriate solder paste. The continuing trend towards increasing miniaturisation and the associated decrease in size of solder resist opening, SRO is causing production difficulties with the stencil printing process. Practical experience of production yields has shown that stencil printing will not be able to meet future requirements for solder bump pitch production below 0.15 mm for these applications. This paper describes a novel approach to replace the stencil printing process by use of an electrolytic deposition of solder. In contrast to stencil printing, use of electrolytic deposition techniques allows production of solder bumps with a pitch below 0.15 mm and with a SRO below 80 μm. Methods for production of electrolytic solder bumps based on pure tin as well as alloys of tin/copper and also tin/silver are shown and in particular a method to control the alloy concentration of electroplated tin/copper bumps. Test results with both alloy systems and also pure tin bumping are presented together with comparison of the advantages and disadvantages. The general advantages of replacement of stencil printing by electrolytic deposition of solder bumps are shown and in particular the improvement of bump reliability and the potential to significantly decrease costs by yield improvement.


Sign in / Sign up

Export Citation Format

Share Document