scholarly journals Tangeretin and its Derivatives: An Integrative Bioinformatic Study of Obesity and Related Immunodeficiency

Author(s):  
V. Manjunath ◽  
Kaveripakam Sai Sruthi ◽  
Sreedevi Adikay

Obesity is a complex and major public health concern known to exacerbate many diseases. There are increasing evidences stating the obese people due to adiposity are getting more susceptible to immune deficiency disorders. Tangeretin is a key member of flavonoids reported to have many favourable biological activities. In search of novel leads in ameliorating obesity and related immunodeficiency, the present study is aimed at the in silico evaluation of tangeretin derivatives to assess their biological role. Initially tangeretin derivatives are designed by molecular manipulation approach.Drug likeness and bioactivity score prediction was done using Molinspiration web tool. Swiss ADME prediction and toxicological predictions were performed. In silico Molecular Docking studies were performed by employing a flexible ligand docking approach using Schrodinger on the protein targets namely leptin, Fat mass and obesity associated protein (FTO), Pancreatic lipase, Peroxisome proliferated receptor (PPARɣ) and NADH oxidase. Further the electronic parameters were computed for the best fitted ligands by DFT analysis. The evaluation of results was made based on Glide (Schrodinger) dock score. Out of 18 screened compounds, some of them showed the best docking scores with the targets when compared with the standard (Lovastatin). Particularly the two ligands (L-13 and L-8) showed the best binding score with all five targets. Moreover, DFT analysis carried out for the tangeretin and best fitted ligands (L13 and L8) substantiated the other in silico studies. These findings probably provide excellent lead candidates for the development of therapeutic drugs in combating obesity and related immune deficiency.

2020 ◽  
Vol 17 (12) ◽  
pp. 1552-1565
Author(s):  
Sonia Verma ◽  
Akashdeep Singh Pathania ◽  
Somesh Baranwal ◽  
Pradeep Kumar

Background: Cancer is a leading cause of deaths worldwide, accounting for 9.6 million deaths in 2018. According to the WHO, the most common causes of cancer deaths are lung, colorectal, stomach liver and breast cancer. Introduction: PARP-1 has a crucial role in cell proliferation, survival and death due to its role in the regulation of multiple biological processes. Quinazolinone and its derivatives represent a large class of biologically active compounds that exhibit a broad spectrum of biological activities such as anti-HIV, anticancer, antifungal, antibacterial, anticonvulsant, anti-inflammatory, antidepressant, antimalarial, antioxidant and antileishmanial activities. Methods: In this study, we have synthesized quinazolinone derivatives by reaction of 2- aminobenzamide and substituted benzaldehydes. The synthesized compounds were also screened in silico for their PARP-1 binding affinities by molecular docking studies using Schrodinger 2016 software. In silico ADME studies were also performed for the synthesized compounds by using QikProp tool of Schrodinger software. Results: Results of in silico studies indicated that quinazolinone derivatives exhibited a good affinity towards the active site of PARP-1. Out of all synthesized compounds, SVA-11 exhibited a maximum dock score (-10.421). Results of ADME studies indicated the suitability of synthesized compounds as drug candidates. Conclusion: The synthesized compounds showed better docking scores than reference drug valiparib. Furthermore, they exhibited favorable ADME profile. Therefore, they may serve as lead compounds in the discovery of PARP-1 inhibitors.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahboob Ali ◽  
Momin Khan ◽  
Khair Zaman ◽  
Abdul Wadood ◽  
Maryam Iqbal ◽  
...  

: Background: The inhibition of α-amylase enzyme is one of the best therapeutic approach for the management of type II diabetes mellitus. Chalcone possesses a wide range of biological activities. Objective: In the current study chalcone derivatives (1-17) were synthesized and evaluated their inhibitory potential against α-amylase enzyme. Method: For that purpose, a library of substituted (E)-1-(naphthalene-2-yl)-3-phenylprop-2-en-1-ones was synthesized by ClaisenSchmidt condensation reaction of 2-acetonaphthanone and substituted aryl benzaldehyde in the presence of base and characterized via different spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C-NMR. Results: Sixteen synthetic chalcones were evaluated for in vitro porcine pancreatic α-amylase inhibition. All the chalcones demonstrated good inhibitory activities in the range of IC50 = 1.25 ± 1.05 to 2.40 ± 0.09 μM as compared to the standard commercial drug acarbose (IC50 = 1.34 ± 0.3 μM). Conclusion: Chalcone derivatives (1-17) were synthesized, characterized, and evaluated for their α-amylase inhibition. SAR revealed that electron donating groups in the phenyl ring have more influence on enzyme inhibition. However, to insight the participation of different substituents in the chalcones on the binding interactions with the α-amylase enzyme, in silico (computer simulation) molecular modeling analyses were carried out.


Author(s):  
Dnyaneshwar Baswar ◽  
Abha Sharma ◽  
Awanish Mishra

Background: Alzheimer’s disease (AD), an irreversible complex neurodegenerative disorder, is most common type of dementia, with progressive loss of cholinergic neurons. Based on the multi- factorial etiology of Alzheimer’s disease, novel ligands strategy appears as up-coming approach for the development of newer molecules against AD. This study is envisaged to investigate anti-Alzheimer’s potential of 10 synthesized compounds. The screening of compounds (1-10) was carried out using in silico techniques. Methods: For in silico screening of physicochemical properties of compounds molinspiration property engine v.2018.03, Swiss ADME online web-server and pkCSM ADME were used. For pharmacodynamic prediction PASS software while toxicity profile of compounds were analyzed through ProTox-II online software. Simultaneously, molecular docking analysis was performed on mouse AChE enzyme (PDB ID:2JGE, obtained from RSCB PDB) using Auto Dock Tools 1.5.6. Results: Based on in silico studies, compound 9 and 10 have been found to have better drug likeness, LD50 value, and better anti-Alzheimer’s, nootropic activities. However, these compounds had poor blood brain barrier (BBB) permeability. Compound 4 and 9 were predicted with better docking score for AChE enzyme. Conclusion: The outcome of in silico studies have suggested, out of various substitutions at different positions of pyridoxine-carbamate, compound 9 have shown promising drug likeness, with better safety and efficacy profile for anti-Alzheimer’s activity. However, BBB permeability appears as one the major limitation of all these compounds. Further studies are required to confirm its biological activities.


2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 353-362
Author(s):  
Begüm Nurpelin Sağlık ◽  
Ahmet Mücahit Şen ◽  
Asaf Evrim Evren ◽  
Ulviye Acar Çevik ◽  
Derya Osmaniye ◽  
...  

AbstractInhibition of aromatase enzymes is very important in the prevention of estrogen-related diseases and the regulation of estrogen levels. Aromatase enzyme is involved in the final stage of the biosynthesis of estrogen, in the conversion of androgens to estrogen. The development of new compounds for the inhibition of aromatase enzymes is an important area for medicinal chemists in this respect. In the present study, new benzimidazole derivatives have been designed and synthesized which have reported anticancer activity in the literature. Their anticancer activity was evaluated against human A549 and MCF-7 cell lines by MTT assay. In the series, concerning MCF-7 cell line, the most potent compounds were the 4-benzylpiperidine derivatives 2c, 2g, and 2k with IC50 values of 0.032 ± 0.001, 0.024 ± 0.001, and 0.035 ± 0.001 µM, respectively, compared to the reference drug cisplatin (IC50 = 0.021 ± 0.001 µM). Then, these compounds were subject to further in silico aromatase enzyme inhibition assays to determine the possible binding modes and interactions underlying their activity. Thanks to molecular docking studies, the effectiveness of these compounds against aromatase enzyme could be simulated. Consequently, it has been found that these compounds can be settled very properly to the active site of the aromatase enzyme.


Author(s):  
Soorya R. ◽  
Dhamodaran P. ◽  
Rajesh Kumar R. ◽  
Duraisamy B.

Objective: Solanum torvum Sw., Family: Solanaceae, commonly known as Turkey Berry is used by the traditional tribes for the treatment of cold, cough, tuberculosis, hepatotoxicity, cancer, etc. The action of the plant towards the treatment of these diseases has been proven except for asthma. The present study is to prove the antiasthmatic activity of methanolic extract and the secondary metabolites of Solanum torvum Sw using in silico docking studies in compare to reference standard Dexamethasone, a synthetic cortisone derivative.Methods: The GC-MS analysis of the dried methanolic extract of the dried fruits of Solanum torvum Sw. and the total saponin fraction has been carried out to know the important moieties that are responsible for the antiasthmatic activity.Results: The results from the docking studies showed that the compounds Cholesta-5,7,9-(11)-trien-3-ol,4,4-dimethyl, (3á); Lanosta-7,9-(11),20-triene-3α, 18-diol, diacetate and Cholestan-26-oic acid,3,7,12,24-tetrakis (acetyloxy), methyl ester, (3à,5á,7à,12à) were found to have significant scores of-6.8,-6.9 and-6.9 respectively towards Glucocorticoid receptor protein (Gr), (PDB id: 4UDC) which is very similar to the affinity of the standard (-7.1). These compounds passed the drug-likeness test. A modification in the structure can be brought, which makes the compounds more potent. The compounds 9, 12-Octadecadienoic acid, ethyl ester; Hexadecanoic acid, ethyl ester; 9-Octadecenoic acid (Z), methyl ester; Oxacycloheptadec-8-en-2-one, (8Z) have passed the Blood Brain Barrier (BBB) filter of the drug-likeness test.Conclusion: The antiasthmatic activity of the drug may be due to the similarity with the structure of Dexamethasone. Further research can be carried out in order to improve the clinical significance of these extracts and its metabolites.


Author(s):  
Arifa Begum ◽  
Shaheen Begum ◽  
Prasad Kvsrg ◽  
Bharathi K.

Objective: The 2, 4-thiazolidinedione containing compounds could lead to most promising scaffolds with higher efficiency toward the targets recognized for its antidiabetic activity when combined with azaglycine moiety. The objective of the present work was to merge functionalized aza glycines with 2, 4-thiazolidinediones, perform in silico evaluation by molecular properties prediction and undertake the molecular docking studies with targets relevant to diabetes, bacterial and viral infections using Swiss Dock programme for unraveling the target identification which can be used for further designing.Methods: (i) In silico studies were performed using Molinspiration online tool, Swiss ADME website and Swiss Target Prediction websites to compute the physicochemical descriptors, oral bioavailability and brain penetration. (ii) Molecular docking studies were performed using Swiss Dock web service for enumeration of binding affinities and assess their biological potentiality.Results: The results predicted good drug likeness, solubility, permeability and oral bioavailability for the compounds. All the compounds showed good docking scores as compared to the reference drugs. The N-oleoyl functionalized aza glycine derivative demonstrated superior binding properties towards all the studied target reference proteins, suggesting its significance in pharmacological actions.Conclusion: The binding interactions observed in the molecular docking studies suggest good binding affinity of the oleoyl functionalized aza glycine derivative, indicating that this derivative would be a promising lead for further investigations of anti-viral, anti-inflammatory and anti-diabetic activities.


Author(s):  
Wopara, Iheanyichukwu ◽  
S. K. Mobisson ◽  
Egelege Aziemeola Pius ◽  
A. A. Uwakwe ◽  
M. O. Wegwu

Treatment of erectile dysfunction is associated with inhibition of Phosphodiesterase 5 enzyme. This study deals with the evaluation of Pterin-6-carboxylic acid inhibitory activity on phosphodiesterase 5 (PDB ID: 4OEW) using in silico docking studies. Pterin-6-carboxylic acid from Baphia nitida was isolated using GC-MS and docked into PDE5 active site. The docking result showed that pterin-6-carboxylic acid bind to the active site of phosphodiesterase 5 with the binding energy value of -7.1 and 2.05A° - 2.23A° when compared with other compound found in the plant. Moreso, docking analysis with the ligand identified specific residues such as: Ile 778, Phe 820, Gln 817, Ser 815 and Gln 775 within the binding pocket which played an important role in the ligand binding affinity to the protein. Result from our In silico studies hypothesized that pterin-6-carboxylic acid can be an inhibitory agent for PDE5 protein which could be a potential drug candidate for the treatment of erectile dysfunction.


2021 ◽  
Vol 17 ◽  
Author(s):  
Thiago M. de Aquino ◽  
Paulo H. B. França ◽  
Érica E. E. S. Rodrigues ◽  
Igor J. S. Nascimento ◽  
Paulo F. S. Santos-Júnior ◽  
...  

Background: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. Objective: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. Method: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. Result: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. Conclusion: The promising antileishmanial activity of three AGH’s and three TSC’s was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document