scholarly journals LONGSHORE CURRENTS AND WAVES AT BURULLUS COAST

1974 ◽  
Vol 1 (14) ◽  
pp. 39
Author(s):  
M. Manohar ◽  
I.E. Mobarek ◽  
A. Morcos

Littoral currents within the breaker zone and currents other than those induced by waves beyond the breaker zone exist with considerable magnitude along the Nile Delta coast. Analysis of the littoral currents within the breaker zone by four semi-empirical formulae involving energy, momentum and radiation stress principles indicates good correlation between predicted and observed velocities. Galvin-Eagleson approach gives the best fit. Current data are statistically analysed enabling the determination of the magnitude, direction and percentage of occurrence of any particular littoral current for any particular period. More comprehensive studies of the currents climate within the breaker zone and beyond the breaker zone for the entire Nile Delta coast covering a large number of years are under way,

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
T. Abrahão ◽  
◽  
H. Almazan ◽  
J. C. dos Anjos ◽  
S. Appel ◽  
...  

Abstract A θ13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ13 and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the $$ {\overline{\nu}}_e $$ ν ¯ e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and 9Li decays. The background-model-independent determination of the mixing angle yields sin2(2θ13) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ13 to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.


1992 ◽  
Vol 46 (6) ◽  
pp. 919-924 ◽  
Author(s):  
Zhong Yuan Zhu ◽  
M. Cecilia Yappert

The relationship between the relative fluorescence signal excited and collected with a double-fiber optic sensor and the sample depth has been investigated. The complexity of the analytical expressions for the relative fluorescence signal and the effective depth was reduced by deriving a set of semi-empirical equations which can be evaluated in a simple fashion. These expressions take into account the configuration of the sensor, i.e., fiber diameter, acceptance angle, and separation between fibers. The expressions were tested with the use of double-fiber sensors with different diameters and separations between fibers. The reduction of the effective depth in solutions with significant absorbance was evaluated.


1981 ◽  
Vol 103 (2) ◽  
pp. 265-270 ◽  
Author(s):  
R. Kotwal ◽  
W. Tabakoff

With increasing interest in the burning of coal in industrial gas turbines, there is also concern for the precise determination of the erosive effects on the turbine components. Series of experiments were conducted to determine the effects of fly ash constituents, particle size, particle velocity, angle of attack and target temperature on the erosion of iron and nickel base alloys. Based on the experimental results, a semi-empirical equation has been obtained for the prediction of the erosion losses. This equation provides a new technique for predicting the metal erosion due to the fly ash produced by the conventional burning of coal.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


1989 ◽  
Vol 134 (1) ◽  
pp. 7-18 ◽  
Author(s):  
B. Bussery ◽  
M.E. Rosenkrantz ◽  
D.D. Konowalow ◽  
M. Aubert-frécon

2012 ◽  
Vol 1 (33) ◽  
pp. 22
Author(s):  
Giuseppe Barbaro ◽  
Giuseppe Roberto Tomasicchio ◽  
Giovanni Malara ◽  
Felice D'Alessandro

The present paper deals with the determination of longshore sediment transport rate. Specifically, case study of Saline Joniche (Reggio Calabria, Italy, is discussed. This case is of interest because, in this location, an artificial basin was built in the 70’s. After few years, port entrance experienced total obstruction by sand. Actually, the area is abandoned and several projects have been proposed for revitalising port activities. This paper discusses a method for estimating the longshore sediment transport rate at Saline Joniche and complements previous methodology.


2016 ◽  
Vol 52 (3) ◽  
Author(s):  
Y. Zasiadko ◽  
O. Pylypenko ◽  
A. Forsiuk ◽  
R. Gryshchenko

The use of cold accumulators based on the principle of ice build up on the cooled surfaces during off-peak periods and ice melting during on-peak periods is an effective method of electricity bills reduction. Within comparatively short periods of on-peak demand a noticeable amount of thermal energy related to ice melting is to be released, it becomes clear that not only sizing of ice accumulators based on balance calculations is actual, but also the determination of time periods of ice accumulation becomes critical. This work presents experimental unit for obtaining data on the ice build-up on the vertical cooled pipes and later on to continuously register data on the ice thickness diminishing at the regimes of ice melting when cooling of pipe stops. The data for ice build-up and melting for some regimes have been presented and analyzed. The data form the base for deriving semi-empirical correlations allowing to determine a time intervals necessary to generate of ice layers of a given thickness.


2021 ◽  
Vol 906 (1) ◽  
pp. 012036
Author(s):  
Persephone Galani ◽  
Sotiris Lycourghiotis ◽  
Foteini Kariotou

Abstract Deriving a local geoid model has drawn much research interest in the last decade, in an endeavour to minimize the errors in orthometric heights calculations, inherited by the use of global geoid reference models. In most parts of the earth, the local geoid surface may be tens of meters away from the Global Reference biaxial Ellipsoid (WGS84), which create numerus problems in topographic, environmental and navigational applications. Several methods have been developed for optimizing the precision of the calculation of the geoid heights undulations and the accuracy of the corresponding orthometric heights calculations. The optimization refers either to the method used for data acquisition, or to the geometrical method used for the determination of the best fit local geoid model. In the present work, we focus on the reference ellipsoid used for the geometric and geoid heights determination and develop a method to provide the one that fits best to the local geoid surface. Moreover, we consider relatively small sea regions and near to coast areas, where the usual methods for data acquisition fail more or less, and we pay attention in two directions: To obtain accurate measured data and to have the best possible reference ellipsoid for the area at hand. In this due, we use the “GNSS-on-boat” methodology to obtain direct sea level data, which we induce in a Moore Penrose pseudoinverse procedure to calculate the best fit triaxial ellipsoid. This locally optimized reference ellipsoid minimizes the geometric heights in the region at hand. The method is applied in two closed sea areas in Greece, namely Corinthian and Patra’s gulf and also in four regions in the Ionian Sea, which exhibit significant geoid alterations. Taking into account all factors of uncertainty, the precision of the mean sea level surface, produced by the “GNSS on boat” methodology, had been estimated at 5.43 cm for the gulf of Patras, at 3.76 cm for the Corinthian gulf and at 3.31 for the Ionian and Adriatic Sea areas. The average difference of this surface and the local triaxial reference ellipsoid, calculated in this work, is found to be less than 15 cm, whereas the corresponding difference with respect to WGS84 is of the order of 30m.


2007 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
ABO BAKER.I. ABO ZED

This study evaluates the effect of prevailing dynamic factors on the sedimentation process in Damietta Harbour along the Nile delta coast of Egypt. The monitoring program spanned the period between 1978 and 1999 and included measurements of waves, currents and bathymetric profiles. The evaluation was based on determination of erosion and accretion rates, current regime, sediment transport, wave characteristics and wave refraction. Results revealed that the predominant wave direction from N-NW sector (86 %) throughout the year is responsible for generation of a longshore eastward current. Less frequent waves from the N-NE sector generate an opposing longshore westward current. The refraction pattern for the prevailing wave direction indicates that the harbour and its navigation channel are located within a divergence of wave orthogonal and in an accretion sediment sink area. The annual net rate of littoral drift on the western side of the harbour is about 1.43 * 105 m3 (accretion), while the annual net rate of littoral drift on the eastern side is about 2.54 * 105 m3 (erosion). Currents fluctuate tremendously in speed and direction, especially during the winter months. Hence, sediment transport takes place in offshore, eastward, and onshore directions. Progressive vector diagrams show that the largest near bottom offshore, onshore and easterly net drift occurs during summer, spring and winter respectively. The onshore sediment transport generated during spring and summer plays an important role in the redistribution of eroded sediments during the winter. The overall study of dynamic factors indicated that the harbour site is characterized by eastern, western, offshore and onshore sediment movements. Therefore, the north-south orientation of the navigation channel, with its depth greater than the surrounding area, interrupts sediment drift from different directions and reduces the current speed. Consequently, the sediments sink within the navigation channel from different directions. The sources of sediments contributing to the siltation process of the harbour and its navigation channels are mainly derived from the Rosetta promontory, Burullus beaches, Damietta promontory and from offshore and the dumping area.


Sign in / Sign up

Export Citation Format

Share Document