scholarly journals FACTORS CONTROLLING CHANGES TO AN OPEN COAST BEACH

1974 ◽  
Vol 1 (14) ◽  
pp. 67
Author(s):  
William N. Seelig ◽  
Robert M. Sorensen

A study of historical information and field measurements in Sargent Beach, Texas, reveal that the shoreline is retreating with historic rates increasing from -10 feet per year in the late 1800's to -31 feet per year (-9.8 m/year) in the early 1970's. The cause of this erosion is the lack of an adequate sand supply to the beach zone. This sand deficiency is due to: a) reduced updrift sand input to the coast by the Brazos River beginning in 1945 and caused by decreased sediment transport capability of the river, b) increased sand storage in the Brazos Delta encouraged by jetties and vegetation, and c) possible offshore losses of sand due to hurricane wave energy focusing on the Brazos Delta in conjunction with river jetting during peak river flows.

1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2038
Author(s):  
Gennady Gladkov ◽  
Michał Habel ◽  
Zygmunt Babiński ◽  
Pakhom Belyakov

The paper presents recommendations for using the results obtained in sediment transport simulation and modeling of channel deformations in rivers. This work relates to the issues of empirical modeling of the water flow characteristics in natural riverbeds with a movable bottom (alluvial channels) which are extremely complex. The study shows that in the simulation of sediment transport and calculation of channel deformations in the rivers, it is expedient to use the calculation dependences of Chézy’s coefficient for assessing the roughness of the bottom sediment mixture, or the dependences of the form based on the field investigation data. Three models are most commonly used and based on the original formulas of Meyer-Peter and Müller (1948), Einstein (1950) and van Rijn (1984). This work deals with assessing the hydraulic resistance of the channel and improving the river sediment transport model in a simulation of riverbed transformation on the basis of previous research to verify it based on 296 field measurements on the Central-East European lowland rivers. The performed test calculations show that the modified van Rijn formula gives the best results from all the considered variants.


2021 ◽  
Author(s):  
Stephanie Jane Duce ◽  
Ana Vila-Concejo ◽  
Robert Jak McCarroll ◽  
Bevan Yiu ◽  
Lachlan A Perris ◽  
...  

1978 ◽  
Vol 1 (16) ◽  
pp. 38
Author(s):  
Sverre Bjordal ◽  
Alf Torum

A common method of estimating the sheltering effects of different breakwater locations and layouts is to carry out physical model wave disturbance tests. Such tests have been carried out in different laboratories throughout the world for many years. But to our knowledge no reports are available in the literature showing comparison between model measurements and field measurements. The trend is that we know more and more on the wave cl imate along our coasts. Hence we have a better basis to make our economical calculations on breakwaters. We therefore also want to operate our models on a more absolute basis rather than on a comparative basis. The trend in recent years has also been to study breakwater locations and layouts in order to minimize mooring forces and ship movements. On this background VHL found a comparison between model test results and field measurements necessary. Full scale measurements of waves were carried out in two harbours by VHL during the winter 1976/77. This paper will present the results of the comparison of the model and the full scale measurements in Berlevag and Vard0 fishing harbours on the open coast of Finnmark in the northern part of Norway (Fig. I) . The model tests, as well as the full scale measurements, have been sponsored by the Norwegian State Harbour Authorities.


2021 ◽  
pp. 103-117
Author(s):  
Davor Kvočka

Sediment transport can have a negative impact on riparian environments, as it can lead to the deterioration of ecological diversity and increase flood risks. Sediment transport modelling is thus a key tool in river basin management and the development of river training structures. In this study, we examined the appropriateness of 1D modelling for total sediment transport loads using the Engelund–Hansen and Ackers–White transport equations for the Lower Danube River. The study evaluated the effect of sediment grading on the accuracy of 1D model results, the appropriateness of 1D sediment transport modelling within technical or engineering projects, and the appropriateness of the Engelund–Hansen and Ackers–White equations for estimating sediment yield in the area of the Lower Danube River. The model results have been compared to field measurements, with the accuracy of the modelling results being evaluated with statistical tests. The obtained results show: (i) the sediment grading does not have a significant impact on the 1D modelling results, (ii) 1D sediment transport modelling gives sufficiently accurate results for practical engineering use (e.g. the estimation of dredging activities), and (iii) the Engelund–Hansen equation is generally better for sediment transport modelling in the Lower Danube River.


2017 ◽  
Vol 17 (5) ◽  
pp. 1325-1334 ◽  
Author(s):  
G. G. Morianou ◽  
N. N. Kourgialas ◽  
G. P. Karatzas ◽  
N. P. Nikolaidis

In the present work, a two-dimensional (2D) hydraulic model was used for the simulation of river flow and sediment transport in the downstream section of the Koiliaris River Basin in Crete, Greece, based on two different structured grids. Specifically, an important goal of the present study was the comparison of a curvilinear grid model with a rectilinear grid model. The MIKE 21C model has been developed to simulate 2D flows and morphological changes in rivers by using either an orthogonal curvilinear grid or a rectilinear grid. The MIKE 21C model comprises two parts: (a) the hydrodynamic part that is based on the Saint-Venant equations and (b) the morphological change part for the simulation of bank erosion and sediment transport. The difference between the curvilinear and the rectilinear grid is that the curvilinear grid lines follow the bank lines of the river, providing a better resolution of the flow near the boundaries. The water depth and sediment results obtained from the simulations for the two different grids were compared with field observations and a series of statistical indicators. It was concluded that the curvilinear grid model results were in better agreement with the field measurements.


2015 ◽  
Vol 202 (1) ◽  
pp. 119-141 ◽  
Author(s):  
Pranav M. Karve ◽  
Loukas F. Kallivokas
Keyword(s):  

1976 ◽  
Vol 1 (15) ◽  
pp. 75 ◽  
Author(s):  
David G. Aubrey ◽  
Douglas L. Inman ◽  
Charles E. Nordstrom

Beach profiles have been measured at Torrey Pines Beach, California for four years and correlated with tides and accurate spectral estimates of the incident wave field. Characteristic equilibrium beach profiles persist for time spans of up to at least two weeks in response to periods of uniform incident waves. These changes in the beach profiles are primarily due to on-offshore sediment transport which can be related to variations in wave characteristics and tidal phase. The most rapid readjustment of the beach profile occurs during high wave energy conditions coincident with spring tides. Alternatively, the highest berm building is associated with moderate to low waves that coincide with spring tides.


Sign in / Sign up

Export Citation Format

Share Document