scholarly journals Highly Conductive and Soluble Polymer Synthesized by Copolymerization of Thiophene with Para-Methoxybenzaldehyde Using Clay Catalyst

Author(s):  
Djamal Eddine Kherroub ◽  
Larbi Bouhadjar ◽  
Bouhadjar Boukoussa ◽  
Abdelkader Rahmouni ◽  
Khadidja Dahmani ◽  
...  

This present research focuses on the synthesis of a new conducting polymer based on the copolymerization of thiophene with para-methoxybenzaldehyde, using a clay as an ecologic catalyst named Maghnite-H+. The catalysis of the reaction by Maghnite-H+ can confer it important benefits, such as the green environment aspect. The reaction was carried out in dichloromethane as a solvent. The new copolymer obtained is a poly (heteroarylene methines) small bandgap polymers precursor. It can be considered as a useful model system for examining the impacts of π-conjugation length on the electronic properties of this type of conjugated polymers. The measurements of the electrical conductivity gave a value of order of 0.0120 W.cm-1, allowing its use in various important applications. The characteristics of the molecular structure and the thermal behavior of the conducting polymer obtained are also discussed using different methods of analysis, such as: proton nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, ultraviolet/visible spectroscopy, and thermal gravimetric analysis (TGA). Copyright © 2019 BCREC Group. All rights reserved 

2014 ◽  
Vol 917 ◽  
pp. 151-159 ◽  
Author(s):  
Nadia Riaz ◽  
Chong Fai Kait ◽  
Zakaria Man ◽  
Binay K. Dutta ◽  
Raihan M. Ramli ◽  
...  

Cu/TiO2 photocatalysts with different metal loading were prepared via modified depositionprecipitation method with the intention to reduce the band gap for Orange II degradation and mineralization under visible light radiation. The photocatalysts were characterized using thermal gravimetric analysis, powder X-ray diffraction, diffuse reflectance UV-Visible spectroscopy and field-emission scanning electron microscopy. 10 wt% photocatalysts showed the best performance compared to the bare TiO2.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Haoran Yun ◽  
Xingxiang Zhang

AbstractMicrospheres with phase change properties were fabricated by polymerization of hexadecyl acrylate (HA) and different cross-linking agents. The samples were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). The results show that, the samples that added cross-linking agents have a smooth surface and the latent heat of them is different. The experiments show that all of the cross-linked copolymer shells can be made into temperature controlled release microspheres. These materials can be potentially applied in the field of thermal energy storage. β-tricalcium phosphate was encapsulated in microspheres to obtain one with a fast release effect. It will effectively promote bone conduction when these microspheres were implanted into a bone defect. This microsphere can be used for orthopedic implant or coating of instrument in the future.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 254
Author(s):  
Dong Han ◽  
Jingwen Li ◽  
Qiang Zhang ◽  
Zewang He ◽  
Zhiwei Wu ◽  
...  

Four D-π-A conjugated polymers, namely P1–P4, which contain benzotriazole building blocks in their backbone as acceptor, are synthesized via palladium-catalyzed direct C-H cross-coupling polycondensation of 5,6-difluorobenzotriazole with different thiophene derivatives, including 3-octylthiophene, 2,2’-bithiophene, thieno[3,4-b][1,4]dioxine, and 4,4-dioctyl-4H-silolo-[3,2-b:4,5-b’]dithiophene as donor units, respectively. Taking the polymer P1 as an example, the chemical structure of the polymer is demonstrated by 1H and 19F NMR spectra. The optical, electrochemical, and thermal properties of these polymers are assessed by UV–vis absorption and fluorescence spectroscopy, cyclic voltammetry (CV), and thermal gravimetric analysis (TGA), respectively. DFT simulations of all polymers are also performed to understand their physicochemical properties. Furthermore, P1 and P2, which have relatively higher molecular weights and better fluorescent quantum efficiency than those of P3 and P4, are utilized as lighting emitters for organic light-emitting diodes (OLEDs), affording promising green and red luminescence with 0.07% and 0.14% of maximum external quantum efficiency, respectively, based on a device with an architecture of ITO/PEDOT:PSS/PTAA/the polymer emitting layer/TPBi/LiF/Al.


2019 ◽  
Vol 28 (4) ◽  
pp. 265-272 ◽  
Author(s):  
Hamou Gherras ◽  
Ahmed Yahiaoui ◽  
Aicha Hachemaoui ◽  
Abdelkader Belfedal ◽  
Abdelkader Dehbi ◽  
...  

The use of conductive polymers as a substitute for metallic conductors and semiconductors has attracted much attention in the literature. In particular, aromatic heterocyclic polymers constitute an important class since they possess chemical and electrical stability in both the oxidized (doped) and neutral (undoped) state. A series of poly(pyrrole- co-2-nitrocinnamaldehyde) were obtained via the condensation of pyrrole and 2-nitrocinnamaldehyde in chloroform using acid exchanged montmorillonite clay called maghnite-H+ as an efficient catalyst. The conjugated copolymer was characterized using proton nuclear magnetic resonance, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy.


2012 ◽  
Vol 554-556 ◽  
pp. 126-129 ◽  
Author(s):  
Shun Yin ◽  
Ning Sun ◽  
Chun Yun Feng ◽  
Zhi Mou Wu ◽  
Zhao Hua Xu ◽  
...  

A series of different generation hyperbranched polyurethane(HBPU) was synthesized based on the raw materials of isophorone diisocyanate(IPDI) and diethanolamine(DEOA). Their structure, thermal degradation mechanism and glass transition temperature(Tg) were characterized by fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance spectroscopy(NMR), thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC). The results showed that: the yield of each generation HBPU was up to 90%, different generation HBPU had almost the same initial degradation temperature(about at 200°C) and they all had two decomposition platforms; with the increase of generation, Tg increased from 107.2°C to 132.1°C. The gloss and hardness of the HBPU coatings were significantly improved.


2020 ◽  
Author(s):  
Murtuza Ali Syed ◽  
Mohammed Al Sawafi ◽  
Feroz Shaik

Abstract Polyurethane (PU) based algae biocomposite is synthesized and tested for boron removal from oil produced water. The percentage of algae is varied in the biocomposite and its physical and chemical properties are evaluated. The surface morphology, crystalline structure, thermal stability is characterized using scanning electron microscope, fourier transform infrared spectroscopy and thermal gravimetric analysis. The density of synthesized PU/algae composites is in the range of 1.12 and 1.20 g/ml based on content of filler in the PU matrix. Weight losses of the tested specimens in various chemical solutions are less than 10%. The boron removal efficiency is in the range of 84–85%, depending upon the algae filler at pH 7.19.


1992 ◽  
Vol 271 ◽  
Author(s):  
Joseph E. Sunstrom ◽  
Susan M. Kauzlarich

ABSTRACTThe compounds La1−xBaxTiO3 (0 ≤ × ≤ 1) have been prepared by arc melting stoichiometric amounts of LaTiO3 and BaTiO3. Single phase samples can be made for the entire stoichiometry range. The polycrystalline samples have been characterized by thermal gravimetric analysis, X-ray powder diffraction, and temperature dependent magnetic susceptibility. This series of compounds has been studied as a possible candidate for an early transition metal superconductor.


Sign in / Sign up

Export Citation Format

Share Document