scholarly journals Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies

2021 ◽  
Vol 17 (1) ◽  
pp. 22-31
Author(s):  
Sri Lestari ◽  
Muflihah Muflihah ◽  
Ratna Kusumawardani ◽  
Mukhamad Nurhadi ◽  
Yuniati Mangesa ◽  
...  

Bledug Kuwu is one of the geological phenomena as a mud volcano that occurs in Kuwu, Purwodadi, Grobogan, Central Java, Indonesia. The evaluation of Bledug Kuwu’s clay as one of the adsorbents for synthetic dyes has been carried out. The preparation of the adsorbent started with washing the clay with distilled water, followed by activation with a solution of hydrochloric acid (1 M) under mechanistic stirring for overnight. The C−H and O−H groups found on the clay adsorbent could attract methylene blue by dispersion forces and hydrogen bonding. Hydrocloric acid activation process for clay can increase surface area from 49 to 70 m2.g−1, meanwhile, reducing the average crystal size from 48.3 to 43.4 nm. The dye removal capacity increased from 34 to 40 mg.g−1 in corresponding to the increase of the temperature from 30 to 50 °C. The results showed that the equilibrium adsorption capacity of activated Bledug Kuwu’s clay reached 99% in an adsorption time of 20 min. The kinetic models of methylene blue adsorption onto BKC and ABKC adsorbents follow the pseudo-second order and the adsorption process is spontaneous with free energy (ΔG) as −23.519 kJ.mol−1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

2017 ◽  
Vol 77 (3) ◽  
pp. 638-646 ◽  
Author(s):  
Neonjyoti Bordoloi ◽  
Manash Deep Dey ◽  
Rupak Mukhopadhyay ◽  
Rupam Kataki

Abstract Biochar obtained through the pyrolysis of Pongamia glabra seed cover (PGSC) at 550 °C with a heating rate of 40 °C/min was characterized and its ability to adsorb the dyes Methylene blue (MB) and Rhodamine B (RB) from aqueous solutions was investigated. The effect of pH, temperature and initial concentration of the dyes on adsorption behavior were investigated. The equilibrium sorption data were analyzed by using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherms. Equilibrium data were well fitted for D-R isotherm in case of MB and Langmuir isotherm in case of RB dyes. The kinetics of dye adsorption on PGSC biochar was well described by applying pseudo-second-order rate equations. The surface of adsorbent before and after the removal of dyes was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. The study suggested that PGSC biochar could be used as a highly efficient adsorbent for the removal of synthetic dyes.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2295 ◽  
Author(s):  
Souad Rakass ◽  
Hicham Oudghiri Hassani ◽  
Mostafa Abboudi ◽  
Fethi Kooli ◽  
Ahmed Mohmoud ◽  
...  

Nano Molybdenum trioxide (α-MoO3) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO3 nanoparticles after adsorption and regeneration. The α-MoO3 nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.


2020 ◽  
Vol 148 ◽  
pp. 02006 ◽  
Author(s):  
Ralf Ruffel Abarca ◽  
Mark Daniel de Luna ◽  
Sudip Chakraborty ◽  
Stefano Curcio ◽  
Sebastiano Candamano

Olive activated biochar (OAB) was prepared from waste de-oiled olive pomace (sansa esausta, SE) through carbonization followed by combined KOH and thermal activation. The activation process was optimized using central composite design (CCD) with pyrolysis temperature, activation time and KOH to pyrolized SE mass ratio (KOH/PSE) as independent variables, and yield, methylene blue number (MBN) and iodine number (ID) as responses. Optimized OAB was subjected to fixed bed adsorption of 100 mg L−1 methylene blue dye. Numerical optimization resulted in optimum process setting of 362°C pyrolysis temperature, 61-min activation time and 0.81 KOH/PSE under which the optimized activated biochar produced 31% OAB, MBN of 679 and ID of 899. Thomas and Yoon-Nelson models best fit the fixed bed adsorption data implying that methylene blue adsorption conforms to Langmuir isotherm and obeys pseudo-second order reversible reaction kinetics with no axial dispersion. The theoretical adsorption capacity of OAB is 131 mg g−1 with theoretical time required for 50% sorbate breakthrough of 54.69 h. These results show the potential application of OAB in dye adsorption.


2021 ◽  
Author(s):  
Asma Nasrullah ◽  
Amir Sada Khan ◽  
A. H. Bhat ◽  
Taghreed M. Fagieh ◽  
Ersaa M. Bakhsh ◽  
...  

Abstract This study examines mangosteen peels waste and alginate beads (MPAB) as an efficient, sustainable and low-cost adsorbent for removal of methylene blue (MB) cationic dye from aqueous solution in a batch adsorption system. Surface functional groups, surface morphology, surface properties, and thermal stability of MBAB were analyzed using various instrumental techniques such as FTIR, FESEM, BET and TGA techniques. MPAB adsorption efficiency for MB was investigated through variation of dosage (0.01- 0.08g), pH (2- 10), contact time (60- 1320 min), MB concentration (20- 100 mg/L) and temperature (298- 333K). MPAB showed maximum removal capacity of 373 mg/g at 25 oC in basic medium. Kinetic and isotherm studies showed that pseudo second order kinetic models and both Freundlich and Langmuir isotherms best fit the experimental data. The findings revealed that novel MPAB has the potential to be a cost-effective adsorbent for removal of textile dyes.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 178
Author(s):  
Serap Sezen ◽  
Vijay Kumar Thakur ◽  
Mehmet Murat Ozmen

Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g−1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Marius Gheju ◽  
Sorina Boran

Abstract In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


Author(s):  
E.S. Mkrtchyan ◽  
◽  
E.A. Neskoromnaya ◽  
I.V. Burakova ◽  
O.A. Ananyeva ◽  
...  

The comparative adsorption capacity of graphene aerogel and activated coconut carbon in the process of removing the main cationic synthetic dye, methylene blue (MB), from aqueous solutions with an initial concentration of 150 mg/l was investigated. The characteristics of the new material have been determined using scanning electron microscopy, thermogravimetry, and Raman spectroscopy. The values of the adsorption capacity of graphene aerogel – 420 mg/g and activated carbon – 205 mg/g were established. The saturation time in the presence of graphene aerogel was 7 min. The experimental data were processed using kinetic models – pseudo-first and pseudo-second order, Elovich and intraparticle diffusion. According to the results obtained, graphene aerogel is a promising sorption material in the extraction of molecular organic pollutants, namely, synthetic dyes, demonstrating a high efficiency of the target pollutant removal.


2021 ◽  

<p>In this paper, the low-cost and practical adsorption for removing methylene blue (MB) dye has been developed by using recoverable natural zeolite that was magnetized with Fe3O4. The magnetization was conducted by co-precipitation technique. The adsorbents obtained from the magnetization were characterized by XRD, FTIR, surface area analyzer and turbidity meter machines. The MB adsorption on the recoverable adsorbent was performed by batch experiment. The effect of Fe3O4 fraction on adsorbent characters, recoverability, and adsorption ability was evaluated. The adsorption kinetic and isotherm were also determined. The research results attributed that recoverable zeolite/Fe3O4 adsorbent has been successfully produced. It was found that the increase of Fe3O4 fraction in the adsorbent, has improved the recoverability, but in the same time, it caused the adsorption decreased. The fraction of Fe3O4 as much 33.30%w displayed compromisingly good capacity and recoverability. The maximum MB dye adsorption was reached by a condition of 0.25 g L-1 of the adsorbent dose, pH 8, and in 60 mins of the contact time The adsorption kinetic well fitted with pseudo second-order with the adsorption rate of 0.0238 mg g-1 min-1. The adsorption strongly agreed with the Langmuir isotherm with adsorption capacity of 32.258 mg g-1 .</p>


Sign in / Sign up

Export Citation Format

Share Document