scholarly journals Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover

2017 ◽  
Vol 77 (3) ◽  
pp. 638-646 ◽  
Author(s):  
Neonjyoti Bordoloi ◽  
Manash Deep Dey ◽  
Rupak Mukhopadhyay ◽  
Rupam Kataki

Abstract Biochar obtained through the pyrolysis of Pongamia glabra seed cover (PGSC) at 550 °C with a heating rate of 40 °C/min was characterized and its ability to adsorb the dyes Methylene blue (MB) and Rhodamine B (RB) from aqueous solutions was investigated. The effect of pH, temperature and initial concentration of the dyes on adsorption behavior were investigated. The equilibrium sorption data were analyzed by using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherms. Equilibrium data were well fitted for D-R isotherm in case of MB and Langmuir isotherm in case of RB dyes. The kinetics of dye adsorption on PGSC biochar was well described by applying pseudo-second-order rate equations. The surface of adsorbent before and after the removal of dyes was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. The study suggested that PGSC biochar could be used as a highly efficient adsorbent for the removal of synthetic dyes.

2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2021 ◽  
Vol 17 (1) ◽  
pp. 22-31
Author(s):  
Sri Lestari ◽  
Muflihah Muflihah ◽  
Ratna Kusumawardani ◽  
Mukhamad Nurhadi ◽  
Yuniati Mangesa ◽  
...  

Bledug Kuwu is one of the geological phenomena as a mud volcano that occurs in Kuwu, Purwodadi, Grobogan, Central Java, Indonesia. The evaluation of Bledug Kuwu’s clay as one of the adsorbents for synthetic dyes has been carried out. The preparation of the adsorbent started with washing the clay with distilled water, followed by activation with a solution of hydrochloric acid (1 M) under mechanistic stirring for overnight. The C−H and O−H groups found on the clay adsorbent could attract methylene blue by dispersion forces and hydrogen bonding. Hydrocloric acid activation process for clay can increase surface area from 49 to 70 m2.g−1, meanwhile, reducing the average crystal size from 48.3 to 43.4 nm. The dye removal capacity increased from 34 to 40 mg.g−1 in corresponding to the increase of the temperature from 30 to 50 °C. The results showed that the equilibrium adsorption capacity of activated Bledug Kuwu’s clay reached 99% in an adsorption time of 20 min. The kinetic models of methylene blue adsorption onto BKC and ABKC adsorbents follow the pseudo-second order and the adsorption process is spontaneous with free energy (ΔG) as −23.519 kJ.mol−1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Z. H. Ibrahim ◽  
M. D. Faruruwa

Cola-nut leaf is an agricultural waste which was used in this research as biosorbent for the adsorption of Cd2+and Cr6+ from aqueous solutions. The leaves of cola nut were modified using 0.1 M HCl. Modified cola nut leaves biosorbent showed slightly higher percentage sorption than the unmodified leaves, for both heavy metals with increasing contact time, having greater affinity for Cd2+. The equilibrium sorption data was attained using the batch technique with increased pH (9) and increased adsorbent dose (1 g/25 cm3 of adsorbate) and initial metal concentration. The functional group of cola nut leaves before and after adsorption was determined using Fourier Transform Infrared Spectroscopy (FTIR). Kinetics data were best fitted to a pseudo-second-order model. Equilibrium data were better described by the Temkin isotherm model with a multilayer adsorption capacity. The study showed that leaves of cola nut are a promising biosorbent for Cd2+ and Cr6+ which could be utilized for industrial wastewater remediation.


2013 ◽  
Vol 78 (6) ◽  
pp. 811-826 ◽  
Author(s):  
M.H. Morcali ◽  
B. Zeytuncu ◽  
O. Yucel

Rice hull, a biomass waste product, and Lewatit TP 214, a thiosemicarbazide sorbent, were investigated as adsorbents for the adsorption of platinum (IV) ions from synthetically prepared dilute chloroplatinic acid solutions. The rice hull was characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of the different adsorption parameters, sorbent dosage, contact time, temperature and pH of solution on adsorption percentage were studied in detail on a batch sorption. The adsorption equilibrium data were best fitted with the Langmuir isotherm model. The maximum monolayer adsorption capacities, Qmax, at 25?C were found to be 42.02 and 33.22 mg g-1 for the rice hull and Lewatit TP 214, respectively. Thermodynamic calculations using the measured ?H?, ?S? and ?G? values indicate that the adsorption process was spontaneous and exothermic. The pseudo-first-order and pseudo-second-order rate equations were investigated; the adsorption of platinum ions for both sorbents was found to be described by the pseudo-second-order kinetic model. The kinetic rate, k2, using 30 mg sorbent at 25?C was found to be 0.0289 and 0.0039 g min-1 mg-1 for the rice hull and Lewatit TP 214, respectively. The results indicated that the rice hull can be effectively used for the removal of platinum from aqueous solution.


2021 ◽  
Vol 406 ◽  
pp. 348-363
Author(s):  
Larbi Haddad ◽  
Abdelkader Hima ◽  
Belkhir Dadamoussa ◽  
Asma Messai Aoun

In this study, a local mineral clay was used as an adsorbent for the elimination of a cationic dye: methylene blue (MB), in an aqueous solution by adsorption technique. Early on, we performed mineralogical and textural analyses of a clay sample using various techniques, namely X-ray diffraction, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. The experimental results showed that this adsorbent is a mesoporous and non-swelling clay with illite and kaolinite as the major components with a specific area of about 110m2/g. The study of MB adsorption on the clay was carried out by optimizing the conditions of adsorption, notably the initial concentration of pollutant C0, the mass of clay m, the contact time t, the potential of hydrogen of the solution pH and the temperature T. Experimental results have shown that the equilibrium data are well adjusted by a Langmuir isotherm equation. Thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy were determined from batch experiments. Results revealed that the adsorption of MB onto illitic clay was endothermic and spontaneous process. Kinetic modeling was also carried out. Experimental data adjusted the kinetic model of pseudo-second order with two stages of intraparticle diffusion.


Author(s):  
Francis Oluwadayo Asokogene ◽  
Muhammad Abbas Ahmad Zaini ◽  
Muhammad Misau Idris ◽  
Surajudeen Abdulsalam ◽  
El-Nafaty Aliyu Usman

Abstract The work was aimed at evaluating the adsorptive properties of neem leave/chitosan aggregates for methylene blue removal. The adsorbent was screened to form coarse (CCANL, 600 µm), medium (MCANL, 300 µm) and fine (FCANL, 150 µm) neem leave/chitosan particles. The samples were characterized for pH, water binding capacity (WBC), surface chemistry by Fourier transform infrared spectroscopy, surface morphology by scanning electron microscope and textural properties by Brunauer-Emmett-Teller method. CCANL, MCANL and FCANL possessed specific surface area of 255, 258 and 242 m2/g, respectively. The effects of initial concentration, adsorbent dosage, contact time, pH and temperature were studied. CCANL, MCANL and FCANL demonstrated adsorption capacity of 102, 92.5 and 105 mg/g, respectively, in which ionic interaction and mesopore filling were the possible adsorption mechanisms. The equilibrium data were well fitted by Redlich-Peterson model, suggesting a monolayer adsorption onto a heterogeneous surface of adsorbent. The kinetics data were best described by pseudo-second-order and intraparticle diffusion models, for which the film diffusion, intraparticle diffusion and surface adsorption could co-exist as the controlling steps in adsorption. Adsorption of methylene blue onto chitosan composites was spontaneous, endothermic and demonstrated increased randomness at solid-solution interface.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1173 ◽  
Author(s):  
Mariza Mone ◽  
Dimitra A. Lambropoulou ◽  
Dimitrios N. Bikiaris ◽  
George Kyzas

This work investigates the application of 5-hydroxymethyl-furfural (HMF) as a grafting agent to chitosan (CS). The material produced was further modified by cross-linking. Three different derivatives were tested with molecular ratios CS/HMF of 1:1 (CS-HMF1), 2:1 (CS-HMF2) and 10:1 mol/mol (CS-HMF3)) to remove Cu2+ and Cd2+ from aqueous solutions. CS-HMF derivatives were characterized both before, and after, metal ions adsorption by using scanning electron microscopy (SEM), as well as Fourier-transform infrared (FTIR) spectroscopy thermogravimetric analysis (TGA), and X-Ray diffraction analysis (XRD). The CS-HMF derivatives were tested at pH = 5 and showed higher adsorption capacity with the increase of temperature. Also, the equilibrium data were fitted to Langmuir (best fitting) and Freundlich model, while the kinetic data to pseudo-first (best fitting) and pseudo-second order equations. The Langmuir model fitted better (higher R2) the equilibrium data than the Freundlich equation. By increasing the HMF grafting from 130% (CS-HMF1) to 310% (CS-HMF3), an increase of 24% (26 m/g) was observed for Cu2+ adsorption and 19% (20 mg/g) for Cd2+. By increasing from T = 25 to 65 °C, an increase of the adsorption capacity (metal uptake) was observed. Ten reuse cycles were successfully carried out without significant loss of adsorption ability. The reuse potential was higher of Cd2+, but more stable desorption reuse ability during all cycles for Cu2+.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


Sign in / Sign up

Export Citation Format

Share Document