scholarly journals Identification of Antioxidant compounds in red raspberry (Rubus Idaeus) Fruit in Kurdistan region (north Iraq)

2012 ◽  
Vol 2 (3) ◽  
pp. 06-10 ◽  
Author(s):  
Dalia A Abdul
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 794
Author(s):  
Luca M. Scolari ◽  
Robert D. Hancock ◽  
Pete E. Hedley ◽  
Jenny Morris ◽  
Kay Smith ◽  
...  

‘Crumbly’ fruit is a developmental disorder in raspberry that results in malformed and unsaleable fruits. For the first time, we define two distinct crumbly phenotypes as part of this work. A consistent crumbly fruit phenotype affecting the majority of fruits every season, which we refer to as crumbly fruit disorder (CFD) and a second phenotype where symptoms vary across seasons as malformed fruit disorder (MFD). Here, segregation of crumbly fruit of the MFD phenotype was examined in a full-sib family and three QTL (Quantitative Trait Loci) were identified on a high density GbS (Genotype by Sequencing) linkage map. This included a new QTL and more accurate location of two previously identified QTLs. A microarray experiment using normal and crumbly fruit at three different developmental stages identified several genes that were differentially expressed between the crumbly and non-crumbly phenotypes within the three QTL. Analysis of gene function highlighted the importance of processes that compromise ovule fertilization as triggers of crumbly fruit. These candidate genes provided insights regarding the molecular mechanisms involved in the genetic control of crumbly fruit in red raspberry. This study will contribute to new breeding strategies and diagnostics through the selection of molecular markers associated with the crumbly trait.


1993 ◽  
Vol 118 (3) ◽  
pp. 388-392 ◽  
Author(s):  
Jean-Pierre Privé ◽  
J.A. Sullivan ◽  
J.T.A. Proctor ◽  
O.B. Allen

The influence of genotype x environment interactions on the performance of `Autumn Bliss' `Heritage' and `Redwing' primocane-fruiting (PF) red raspberry (Rubus idaeus L.) cultivars was studied at six sites across Ontario and Quebec during 1989 and 1990. Cultivar × location × year interactions were found for most vegetative and reproductive components analyzed. `Autumn Bliss' had the most consistent performance of the three cultivars in all location/year combinations, while `Redwing' varied greatly between environments. `Heritage' was always the latest-bearing of the three cultivars and failed to achieve its maximum yield potential in many of the northern locations.


2006 ◽  
Vol 131 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

`Maurin Makea', `Muskoka', ` Ottawa', and `Preussen' red raspberry (Rubus idaeus L.) canes were collected from the field and subjected to different hot water treatments (20, 35, 40, 45, and 50 °C) to determine if endodormancy could be removed by a near lethal stress. Estimation of days for 50% budbreak (DD50) was found useful for describing the state of bud dormancy in the samples. Bud dormancy was broken in `Ottawa' by immersing the canes in 45 °C water for 2 hours, in `Maurin Makea' by treating the canes in 40 °C water, and in `Preussen' by both 40 and 45 °C treatments. The influence of this treatment on dormancy and cold hardiness at different times of the winter was further examined using `Ottawa' raspberry. The treatment removed bud dormancy most effectively in October, when the samples were in deepest dormancy. A slight effect was observed in November, but no effect in January. During ecodormancy in February the treatment delayed budbreak. Hot water treatment reduced cold hardiness of `Ottawa' canes by 8 to 15 °C, and that of buds by 9 to 13 °C during both endo- and ecodormancy. Based on the capacity of buds and canes to reacclimate, recovery from the stress treatment was possible at temperatures ≥4 °C. Loss of cold hardiness was caused by high treatment temperature itself and was not related to breaking of dormancy in samples. This finding suggests that dormancy and cold hardiness are physiologically unconnected in raspberry.


2004 ◽  
Vol 109 (4) ◽  
pp. 740-749 ◽  
Author(s):  
J. Graham ◽  
K. Smith ◽  
K. MacKenzie ◽  
L. Jorgenson ◽  
C. Hackett ◽  
...  

1997 ◽  
Vol 73 (4) ◽  
pp. 453-457 ◽  
Author(s):  
R. A. Lautenschlager

Red raspberry (Rubus idaeus L.) seeds germinate only after seed coats are degraded. In nature this happens slowly. Seeds from recently collected fruit (fresh to four years old) germinated only after scarification of the seed coat by 20-minute soaking in concentrated sulfuric acid. Germination was not enhanced by: (1) short-term intermittent soaking, up to 81 hours, in dilute (0.01 normal) hydrochloric acid; (2) passage through the digestive tracts of bears, coyotes, or birds; (3) physical perturbations such as nicking, mechanical scarification, repeated freezing and thawing and/or four years of exposure in the field; (4) exposure to light; (5) increased temperatures or temperature fluctuations; or (6) addition of nitrogen (ammonium nitrate, urea). Key words: animal passage, germination, nitrogen, red raspberry, Rubus idaeus L., seed coat, seed weight, scarification, stratification


2009 ◽  
Vol 19 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Kathleen Demchak

High tunnels are a relatively economical form of protected culture, and offer cultural advantages such as protection from the elements and an extended production season. Interest in high tunnels for small fruit production has been increasing in North America. Growers in the United States and Canada are using multi-bay and single-bay high tunnels for production of red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis), blackberry (Rubus subgenus Rubus), strawberry (Fragaria ×ananassa), and blueberry (Vaccinium spp.). Research trials using high tunnels are being conducted in numerous places across the United States. In most instances, high tunnels increased yields of berry crops, improved quality, and decreased the incidence of most diseases compared with field production, powdery mildew (Sphaerotheca macularis) being a notable exception. The insect and mite complex encountered in tunnels when growing berry crops has changed markedly, often becoming similar to that which might have been expected in greenhouses, with numbers of two-spotted spider mite (Tetranychus urticae), whitefly (Aleyrodidae), and thrips (Frankliniella spp.) reaching high levels without control measures. In studies at The Pennsylvania State University, primocane-bearing cultivars of red raspberry plants produced at least two to three times as much marketable fruit in tunnels as in a previous field study, with substantial summer and fall crops obtained. ‘Triple Crown’ thornless blackberry produced very high marketable yields in the tunnels, even though winter injury historically resulted in a lack of blackberry production in the field. Strawberry production in a plasticulture system using short-day or day-neutral cultivars was found to be viable; however, the primary benefit of high tunnels for strawberry may have been reliability of production rather than a yield increase. Potential reasons for improvements in productivity and quality are numerous and warrant further attention.


Sign in / Sign up

Export Citation Format

Share Document