scholarly journals Dynamic Pt-OH-•H2O-Ag Species Mediate Synergetic Electron and Proton Transfer for Catalytic Hydride Reduction of 4-Nitrophenol at Confined Nanoscale Interface

Author(s):  
kun zhang ◽  
Meng Ding ◽  
bingqian shan ◽  
bo peng ◽  
jiafeng zhou

The nature of interfacial state and/or bonding at heterogeneous nanoscale surface of bimetals remains elusive. For very classical probe reaction of catalytic hydride catalytic reduction of –NO2 to NH2 (herein reduction of 4-NP to 4-AP as an example), three abnormal experimental phenomena cannot be elucidated as such: 1) the hydrogen source of final product of 4-AP is originated from water solvent, rather than NaBH4 reducer; 2) reverse electron transfer between bimetals was observed, which is resisted to the normal thermaldynamic law; 3) even in the absence of any metals, for example just using carbon nanodots as supports, the reaction occurs. These observations indicates that the reduction of –NO2 groups did not follow the classical metal-centered electron and hydride transfer mechanism, i.e., Langmuir-Hinshelwood (L-H) mechanism. We herein provide strong evidence that, the catalytic hydride reduction of 4-NP to 4-AP is though a completely new surface hydrous hydroxyl specie mediated concerted electron and proton transfer process, wherein owing to the space overlapping of p orbitals in hydrous hydroxyl intermediate, an ensemble of interface states are dynamically formed, which could be alternative channels for concerted electron and proton transfer. The main role of second metal of Pt is to regulate the density of surface hydrous hydroxyl intermediate and its interactive strength with metals. This new mechanism not only answers all the abnormal experimental observations above mentioned, but also provide some new insights to water and/or hydroxyl group promoted reaction involved the activation of small molecules (CO2, CO, N2, H2O etc.) in areas of electrochemistry, energy storage and metalloenzyme catalysis.

Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2018 ◽  
Vol 5 (1) ◽  
pp. 93-115
Author(s):  
Miloš Stamenković

SummarySports photography undoubtedly has a significant place in sports press and publicism. It’s main and primary role is to present sports to the readers as art, which it is. Sport is characterized by dynamic and varied movements, and the main role of sports photography is reflected in the fact that it is in this way that sport shows its essence. Having in mind that photography tells more than a thousand words it sends a clear message to the reader as well to people who are informed about events via sports portals. Sports photography is a multidimensional art for many reasons. When we say “multi”, it primarily refers to a wider range that sports photography has to offer, which means sports photography is not only directed at presenting athletes on the move and the main actors who contribute to achieving the results by their engagement – it also has the role of sports “psychophotography” which is an analysis and capture of the emotional reaction of an athlete after winning or losing from the opposing team.


2020 ◽  
Vol 26 (6) ◽  
pp. 1283-1296
Author(s):  
K.A. Omarieva ◽  
P.G. Isaeva

Subject. The article addresses problems and prospects for the banking supervision development in the Russian Federation under modern conditions. Objectives. We review the essence and methods of organization of the banking supervision, and identify the main problems and prospects for its development. Methods. To provide valid, reliable and reasoned recommendations, we apply normative and integrated approaches to the study of the banking supervision effectiveness in the current circumstances. Results. The paper investigates main problems and development prospects for the Russian banking supervision. The essential importance of supervision comes from the main role of the banking system in maintaining accounts of economic entities and making settlements. Even minor failures or delays in operations can lead to negative outcomes and disastrous consequences for the entire monetary system and the national economy. Therefore, we highlight issues that require attention, and make proposals for further development of the banking supervision. Conclusions. In the context of dynamically developing economy, the banking practice is becoming more complex. As a result, there is a need for new financial instruments that can reduce risks, increase the speed and efficiency of operations and document flow, and help achieve the world levels of introduced standards.


Author(s):  
Shamim Mushtaq

Uninhibited proliferation and abnormal cell cycle regulation are the hallmarks of cancer. The main role of cyclin dependent kinases is to regulate the cell cycle and cell proliferation. These protein kinases are frequently down regulated or up regulated in various cancers. Two CDK family members, CDK 11 and 12, have contradicting views about their roles in different cancers. For example, one study suggests that the CDK 11 isoforms, p58, inhibits growth of breast cancer whereas, the CDK 11 isoform, p110, is highly expressed in breast tumor. Studies regarding CDK 12 show variation of opinion towards different parts of the body, however there is a consensus that upregulation of cdk12 increases the risk of breast cancer. Hence, CDK 11 and CDK 12 need to be analyzed to confirm their mechanism and their role regarding therapeutics, prognostic value, and ethnicity in cancer. This article gives an outline on both CDKs of information known up to date from Medline, PubMed, Google Scholar and Web of Science search engines, which were explored and thirty relevant researches were finalized.


2020 ◽  
Vol 20 ◽  
Author(s):  
Qionghui Wu ◽  
Haidong Wei ◽  
Wenbo Meng ◽  
Xiaodong Xie ◽  
Zhenchang Zhang ◽  
...  

: Annexin, a calcium-dependent phospholipid binding protein, can affect tumor cell adhesion, proliferation, apoptosis, invasion and metastasis, as well as tumor neovascularization in different ways. Recent studies have shown that annexin exists not only as an intracellular protein in tumor cells, but also in different ways to be secret outside the cell as a “crosstalk” tool for tumor cells and tumor microenvironment, thus playing an important role in the development of tumors, such as participating in epithelial-mesenchymal transition, regulating immune cell behavior, promoting neovascularization and so on. The mechanism of annexin secretion in the form of extracellular vesicles and its specific role is still unclear. This paper summarizes the main role of annexin secreted into the extracellular space in the form of extracellular vesicles in tumorigenesis and drug resistance and analyzes its possible mechanism.


Sign in / Sign up

Export Citation Format

Share Document