scholarly journals An optimal design of square spiral integrated inductor using metaheuristic techniques

Author(s):  
Soufiane Abi ◽  
Hamid Bouyghf ◽  
Benhala Bachir ◽  
Abdelhadi Raihani

<p>In this paper, the optimal sizing of CMOS RF square spiral integrated inductor utilizing three meta-heuristic techniques namely Ant Colony Optimization, Artificial Bee Colony and Differential Evolution is presented. The π-model is employed for the characterization of inductor behavior. In this optimization procedure, the geometrical parameters of the CMOS RF square spiral integrated inductor are considered as the design variables that satisfy the most important constraints such as the fixed value of required inductance 4nH at the operating frequency 2.4 GHz. The design of the integrated square spiral inductor is done with UMC 130 nm CMOS technology. A comparison between the used meta-heuristic techniques is emphasized. The optimization results are checked and validated by the mean of the Momentum Advanced Design System (ADS).</p>

Author(s):  
Issa Sabiri ◽  
Hamid Bouyghf ◽  
Abdelhadi Raihani ◽  
Brahim Ouacha

Analog integrated circuits for biomedical applications require good performance. This paper presents an instrumentation amplifier (IA) design based on three complementary metal oxide semiconductor (CMOS) conveyors with an active resistor. This circuit offers the possibility to control the gain by voltage and current. We have designed the IA to minimize the parasitic resistance (Rx) with large bandwidth and high common mode rejection ratio (CMRR) using the artificial bee colony algorithm (ABC). The topology is simulated using 0.35µm CMOS technology parameters. The optimization problem is represented by an objective function that will be implemented using MATLAB script. The results were approved by the simulation using the advanced design system (ADS) tool. The simulation results were compared to the characteristics of some other instrumentation amplifiers exsisting in the literature. The circuit has a higher CMRR than other topologies.


Author(s):  
Mahdi Abachizadeh ◽  
Aghil Yousefi-Koma ◽  
Masoud Shariatpanahi

In this paper, employing developed models of Ionic polymer metal composites, a cantilever beam made of Nafion is optimized for maximum tip deflection as well as maximum blocking (tip) force using the Min-Max method in a multi-objective discipline. Regarding the optimization procedure, saturation level of hydration, length and thickness of the beam, and applied voltage are considered as design variables. The robust and novel methods of continuous ant colony optimization (ACOR) and artificial bee colony (ABC), both inspired from collective behavior of ant and bee swarms, are here employed to guarantee finding near-optimal solutions in a continuous nonlinear constrained optimization schedule. Results obtained from several independent runs clearly demonstrate fast convergence with nearly identical results for both methods, conservatively claimed as global optima. In addition, it is shown that the multi-objective approach has ended in a reasonable reduction of tip deflection for a remarkable increase in blocking force.


Author(s):  
Hamid Bouyghf ◽  
Bachir Benhala ◽  
Abdelhadi Raihani

The goal of this present paper is to design, analysis the influence of the inductor geometrical parameters and the effect of the metal thickness on the quality factor-Q in integrated square spiral inductor using an efficient application of the artificial bee colony (ABC) algorithm. The inductors were optimized at 2.4 GHz to determinate their major geometrical dimensions (sp, w, din…) and their number of turns, for uses in radio-frequency integrated circuits (RFICs). The optimization results are validated by the simulation using an electromagnetic simulator (ADS-Momentum). Using matlab software, the study on the impact of the effect of geometrical parameters and the effect of metal thickness, on the factor of quality-Q of spiral inductors, is shown. We first reported that it is possible to improve Q-factors further by increasing the metal thickness, and in the design of inductor; a compromise must be reached between the value of w, n, sp and din to achieve the desired quality factor-Q and other electrical parameters.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Pierre Duysinx ◽  
WeiHong Zhang ◽  
HaiGuang Zhong ◽  
Pierre Beckers ◽  
Claude Fleury

Abstract A robust and automatic shape optimization procedure is presented in this paper, which incorporates recent developments in the field of computer-aided design (CAD) of mechanical structures, such as geometric modelling, automatic selection of independent design variables, sensitivity analysis using reliable mesh perturbation schemes, error estimation and adaptive mesh refinement. A numerical example is given to show the efficiency of the procedure.


Author(s):  
Kikuo Fujita ◽  
Shinsuke Akagi

Abstract A Framework of computational design method and model is proposed for layout and geometry design of complicated mechanical systems, which is named “configuration network and its viewing control”. In the method, a design object is represented with a set of declarative relationships among various elements of a system, that is, configurations, which is gradually extended from schematic structure to exact layout and geometry through design process. Since a whole of such configurations forms a too complicated network to compute all together, how to view subparts is controlled based on levels of granularity and width of scope range. Such a configuration network is made to grow and refined through embodying geometry and layout corresponding to a focused subpart with a numerical optimization procedure. The framework has also an ability to flexibly integrate with engineering analysis. Moreover, a design system is implemented with an object-oriented programming technique, and it is applied to a design problem of air conditioner units in order to show the validity and effectiveness of the framework.


Author(s):  
Soheil Almasi ◽  
Mohammad Mahdi Ghorani ◽  
Mohammad Hadi Sotoude Haghighi ◽  
Seyed Mohammad Mirghavami ◽  
Alireza Riasi

Optimization of vacuum cleaner fan components is a low-cost and time-saving solution to satisfy the increasing requirement for compact energy-efficient cleaners. In this study, surrogate-based optimization technique is used and for the first time it is focused on maximization of Airwatt parameter, which describes the fan suction power, as an objective function (Case II). Besides, the shaft power is minimized (Case I) as another optimization target in order to reduce the power consumption of the vacuum cleaner. 11 geometrical variables of 3 fan components including impeller, diffuser and return channel are selected as the optimization design variables. 80 training points are distributed in the sample space using Advanced Latin Hypercube Sampling (ALHS) technique and the outputs of sample points are calculated by means of CFD simulations. Kriging and RSA surrogate models have been fitted to the outputs of the sample space. Through coupling of constructed Kriging models and Multi-Island Genetic Algorithm (MIGA), the optimal design for each of the optimization cases is presented and evaluated using numerical simulations. A 20.22% reduction in shaft power in Case I and an improvement of 27.73% in Airwatt in Case II have been achieved as the overall results of this study. Despite achieving goals in both optimization cases, a slight decrease in Airwatt in Case I (−6.20%) and a slight increase in shaft power in Case II (+4.82%) are observed relative to primary fan. Furthermore, the Analysis of Variance (ANOVA) determines the importance level of design variables and their 2-way interactions on the objective functions. It was concluded that geometrical parameters related to all of the fan components must be considered simultaneously to conduct a comprehensive optimization. The reasons of enhancement in optimal cases compared with the reference design have been further investigated by analysis of the fan internal flow field. Post-processing of the CFD results demonstrates that the applied geometrical modifications cause a more uniform flow through the flow passages of the optimal fan components.


Author(s):  
Hongwei Song ◽  
Mingjun Li ◽  
Chenguang Huang ◽  
Xi Wang

This paper focuses on thermal-structural analysis and lightweight design of actively-cooled panels reinforced by low density lattice-framed material (LFM) truss cores. Numerical models for actively-cooled panels are built up with parametric codes to perform the coupled thermal-structural analysis, considering the internal thermal environment of convective heat transfer in the combustor and convective heat transfer in the cooling channel, and internal pressures from the combustion gas and the coolant. A preliminary comparison of the LFM truss reinforced actively-cooled panel and the non-reinforced panel demonstrates that the thermal-structural behavior is significantly improved. Then, an optimization procedure is carried out to find the lightest design while satisfying thermal deformation and plastic strain constraints, with thicknesses of face sheets and topology parameters of LFM truss as design variables. The optimization result demonstrates that, compared with the non-reinforced actively-cooled panels, weight reduction for the panel reinforced by LFM truss may reach 19.6%. We have also fabricated this type of actively-cooled panel in the laboratory level, and the specimen shows good mechanical behaviors.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
K. Yousef ◽  
H. Jia ◽  
R. Pokharel ◽  
A. Allam ◽  
M. Ragab ◽  
...  

This paper presents the design of ultra-wideband low noise amplifier (UWB LNA). The proposed UWB LNA whose bandwidth extends from 2.5 GHz to 16 GHz is designed using a symmetric 3D RF integrated inductor. This UWB LNA has a gain of 11 ± 1.0 dB and a NF less than 3.3 dB. Good input and output impedance matching and good isolation are achieved over the operating frequency band. The proposed UWB LNA is driven from a 1.8 V supply. The UWB LNA is designed and simulated in standard TSMC 0.18 µm CMOS technology process.


Author(s):  
Ethan M. Moon ◽  
Vadim V. Yakovlev

PurposeThis paper aims to introduce and illustrate a computational technique capable of determining the geometry and complex permittivity of a supplementary dielectric insert making distributions of microwave-induced dissipated power within the processed material as uniform as possible.Design/methodology/approachThe proposed technique is based on a 3D electromagnetic model of the cavity containing both the processed material and the insert. Optimization problem is formulated for design variables (geometrical and material parameters of the insert) identified from computational tests and an objective function (the relative standard deviation [RSD]) introduced as a metric of the field uniformity. Numerical inversion is performed with the method of sequential quadratic programming.FindingsFunctionality of the procedure is illustrated by synthesis of a dielectric insert in an applicator for microwave fixation. Optimization is completed for four design variables (two geometrical parameters, dielectric constant and the loss factor of the insert) with 1,000 points in the database. The best three optimal solutions provide RSD approximately 20 per cent, whereas for the patterns corresponding to all 1,000 non-optimized (randomly chosen) sets of design variables this metric is in the interval from 27 to 136 per cent with the average of 78 per cent.Research limitations/implicationsAs microwave thermal processing is intrinsically inhomogeneous and the heating time is not a part of the underlying model, the procedure is able to lead only to a certain degree of closeness to uniformity and is intended for applications with high heating rates. The initial phase of computational identification of design variables and their bounds is therefore very important and may pre-condition the “quality” of the optimal solution. The technique may work more efficiently in combination with advanced optimization techniques dealing with “smart” (rather than random) generation of the data; for the use with more general microwave heating processes characterized by lower heating rates, the technique has to use the metric of non-uniformity involving temperature and heating time.Practical implicationsWhile the procedure can be used for computer-aided design (CAD) of microwave applicators, a related practical limitation may emerge from the fact that the material with particular complex permittivity (determined in the course of optimization) may not exist. In such cases, the procedure can be rerun for the constant values of material parameters of the available medium mostly close to the optimal ones to tune geometrical parameters of the insert. Special manufacturing techniques capable of producing a material with required complex permittivity also may be a practical option here.Originality/valueNon-uniformity of microwave heating remains a key challenge in the design of many practical applicators. This paper suggests a concept of a practical CAD and outlines corresponding computational procedure that could be used for designing a range of applied systems with high heating rates.


Sign in / Sign up

Export Citation Format

Share Document