mechanical breaking
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1331
Author(s):  
Zhe Zhang ◽  
Zhidong Wen ◽  
Haiyan Shi ◽  
Qi Song ◽  
Ziye Xu ◽  
...  

SiC wafers, due to their hardness and brittleness, suffer from a low feed rate and a high failure rate during the dicing process. In this study, a novel dual laser beam asynchronous dicing method (DBAD) is proposed to improve the cutting quality of SiC wafers, where a pulsed laser is firstly used to introduce several layers of micro-cracks inside the wafer, along the designed dicing line, then a continuous wave (CW) laser is used to generate thermal stress around cracks, and, finally, the wafer is separated. A finite-element (FE) model was applied to analyze the behavior of CW laser heating and the evolution of the thermal stress field. Through experiments, SiC samples, with a thickness of 200 μm, were cut and analyzed, and the effect of the changing of continuous laser power on the DBAD system was also studied. According to the simulation and experiment results, the effectiveness of the DBAD method is certified. There is no more edge breakage because of the absence of the mechanical breaking process compared with traditional stealth dicing. The novel method can be adapted to the cutting of hard-brittle materials. Specifically for materials thinner than 200 μm, the breaking process in the traditional SiC dicing process can be omitted. It is indicated that the dual laser beam asynchronous dicing method has a great engineering potential for future SiC wafer dicing applications.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2860
Author(s):  
Eglė Kumpikaitė ◽  
Sandra Varnaitė-Žuravliova ◽  
Indrė Tautkutė-Stankuvienė ◽  
Ginta Laureckienė

The behaviour of textile products made from different fibres during finishing has been investigated by many scientists, but these investigations have usually been performed with cotton or synthetic yarns and fabrics. However, the properties of raw materials such as linen and hemp (other cellulose fibres) and linen/silk (cellulose/protein fibres) have rarely been investigated. The aim of the study was to investigate and compare the mechanical (breaking force and elongation at break) and end-use (colour fastness to artificial light, area density, and abrasion resistance) properties of cellulose and cellulose/protein woven fabrics. For all fabrics, ΔE was smaller than three, which is generally imperceptible to the human eye. Flax demonstrated the best dyeability, and hemp demonstrated the poorest dyeability, comparing all the tested fabrics. The colour properties of fabrics were greatly influenced by the washing procedure, and even different fabric components of different weaves lost their colours in different ways. Flax fibres were more crystalline than hemp, and those fibres were more amorphous, which decreased the crystallinity index of flax in flax/silk blended fabric. Unwashed flax fabric was more resistant to artificial light than flax/silk or hemp fabrics. Finishing had a great influence on the abrasion resistance of fabrics. The yarn fibre composition and the finishing process for fabrics both influenced the mechanical (breaking force and elongation at break) and end-use (area density and abrasion resistance) properties of grey and finished fabrics woven from yarns made of different fibres.


Elements ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Frieder Klein ◽  
Jesse D. Tarnas ◽  
Wolfgang Bach

The capacity for molecular hydrogen (H2) to hydrogenate oxygen and carbon is critical to the origin of life and represents the basis for all known life-forms. Major sources of H2 that strictly involve nonbiological processes and inorganic reactants include (1) the reduction of water during the oxidation of iron in minerals, (2) water splitting due to radioactive decay, (3) degassing of magma at low pressures, and (4) the reaction of water with surface radicals during mechanical breaking of silicate rocks. None of these processes seem to significantly affect the current global atmospheric budget of H2, yet there is substantial H2 cycling in a wide range of Earth’s subsurface environments, with multifaceted implications for microbial ecosystems.


Author(s):  
Serhii Tynyna ◽  
◽  
Ihor Chobotko ◽  

Purpose. State-of-the art review concerning the effect of stress-strain state of the rock upon its resistance to mechanical breaking is represented. Methods. It is highlighted that while calculating efficient breaking modes of complex stressed rock and parameters of rock-breaking machine organs, it is required to consider the degree of natural stress of the near-face rock under breaking. Results. Necessity to take into account the rock stress degree has been substantiated as the index of breaking strength of stress-free rock samples differs considerably from the one obtained with the consideration of stress state of the natural rock mass. The simple strock in terms of rheology (i.e. linear-elastic one) has been analyzed. Scientific novelty. In this context, it is taken into consideration that simultaneous availability of all the components of stress tensor due to natural and external forces does not make the rock to be plastic. It means that the rock is within the frameworks of elastic deformations. In this context, potential deformation energy accumulated within the rock volume unit is specified as the basis to determine the reduced stress in terms of which the ultimate elastic state of that volume takes place. Practical importance The amount of cone feed to the bottomhole of stressed rocks is limited by the value of the safe penetration rate, depending on the degree of rock tension.


2019 ◽  
Author(s):  
Annaclaudia Montanino ◽  
Marzieh Saeedimasine ◽  
Alessandra Villa ◽  
Svein Kleiven

AbstractTraumatic brain injuries are a leading cause of morbidity and mortality worldwide. With almost 50% of traumatic brain injuries being related to axonal damage, understanding the nature of cellular level impairment is crucial. Experimental observations have so far led to the formulation of conflicting theories regarding the cellular primary injury mechanism. Disruption of the axolemma, or alternatively cytoskeletal damage has been suggested mainly as injury trigger. However, mechanoporation thresholds of generic membranes seem not to overlap with the axonal injury deformation range and microtubules appear too stiff and too weakly connected to undergo mechanical breaking. Here, we aim to shed a light on the mechanism of primary axonal injury, bridging finite element and molecular dynamics simulations. Despite the necessary level of approximation, our models can accurately describe the mechanical behavior of the unmyelinated axon and its membrane. More importantly, they give access to quantities that would be inaccessible with an experimental approach. We show that in a typical injury scenario, the axonal cortex sustains deformations large enough to entail pore formation in the adjoining lipid bilayer. The observed axonal deformation of 10-12% agree well with the thresholds proposed in the literature for axonal injury and, above all, allow us to provide quantitative evidences that do not exclude pore formation in the membrane as a result of trauma. Our findings bring to an increased knowledge of axonal injury mechanism that will have positive implications for the prevention and treatment of brain injuries.


2018 ◽  
Vol 25 (07) ◽  
pp. 1950016 ◽  
Author(s):  
BINGQI JIANG ◽  
XIAOHONG JIA ◽  
FEI GUO ◽  
YUMING WANG

An experimental study on the tribology behavior and mechanism of NBR-Steel pair has been carried out. Abrasive paper was used to polish the NBR surface. The influences of surface topography on the friction coefficient were investigated based on the block-on-ring tribometer. Results show that polishing with abrasive paper is an effective method to reduce the friction coefficient of NBR on steel. Superlubricity was also found in the test. A new method to explain the superlubricity based on the contact angle and surface molecular structure was put forward in this work. Abrasive paper polishing changes the surface asperities, so affects the contact angle, so as to influence the boundary limiting shearing strength, and then causes the superlubricity. During the friction process the microstructure obviously changed, along with mechanical breaking of the molecular chain.


2018 ◽  
Vol 69 (04) ◽  
pp. 277-280
Author(s):  
IOAN PAVEL OANA ◽  
OANA DORINA ◽  
TRIPA SIMONA

This paper presents a comparative analysis of three batches of wool yarns with different fineness, twists and compositions and the way in which these characteristics influence the tensile properties of the yarns. We performed the tensile strength tests and the values for the following tensile characteristics were determined: breaking force, elongation at break, tenacity and the mechanical breaking work and were made the diagrams. Stroke for strength and elongation at break – the diagrams give us an idea on the distribution of weak sections along the yarn tested. In order to make this analysis we used the machine USTER® TENSOJET 4. The main conclusions drawn from this analysis are following: the breaking force of the yarns is mainly determined by the value of length density and only after that by the percentage of polyamide and the twisting value, elongation at break is primarily influenced by the percentage of polyamide from the yarns composition and only then by the yarns twisting degree, the toughest yarns are the ones with the smallest fineness, the mechanical work created when stretching the yarns depends mainly by the percentage of polyamide from the yarns composition, by the yarns fineness and only then by their twisting.


Author(s):  
Yun Zhou ◽  
Yibo Gao ◽  
Benxin Wu ◽  
Sha Tao ◽  
Ze Liu

This paper presents an interesting nanosecond (ns) laser-induced plasma deburring (LPD) effect (from microchannel sidewalls) discovered by the authors, which has been rarely reported before in the literature. Fast imagining study has been performed on plasma produced by ns laser ablation of the bottom of microchannels. It has been found that the plasma can effectively remove burrs from the sidewall of the channels, while on the other hand microscopic images taken in this study did not show any obvious size or shape change of the channel sidewall after LPD. LPD using a sacrifice plate has also been studied, where the plasma for deburring is generated by laser ablation of the sacrifice plate instead of the workpiece. The observed laser-induced plasma deburring effect has several potential advantages in practical micromanufacturing applications, such as high spatial resolution, noncontact and no tool wear, and less possibility of damaging or overmachining useful microfeatures when removing burrs from them. The fundamental mechanisms for the observed laser-induced plasma deburring effect still require lots of further work to completely understand, which may include mechanical breaking of burrs due to high kinetic energies carried by plasma and the associated shock wave, and/or thermal transport from plasma to burrs that may cause their heating and phase change, or other mechanisms.


2009 ◽  
Vol 24 (5) ◽  
pp. 1401-1410 ◽  
Author(s):  
Min D. Tang‐Schomer ◽  
Ankur R. Patel ◽  
Peter W. Baas ◽  
Douglas H. Smith

Sign in / Sign up

Export Citation Format

Share Document