scholarly journals Optical Pulling Using Chiral Metalens as a Photonic Probe

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3376
Author(s):  
Miao Peng ◽  
Hui Luo ◽  
Zhaojian Zhang ◽  
Tengfang Kuang ◽  
Dingbo Chen ◽  
...  

Optical pulling forces, which can pull objects in the source direction, have emerged as an intensively explored field in recent years. Conventionally, optical pulling forces exerted on objects can be achieved by tailoring the properties of an electromagnetic field, the surrounding environment, or the particles themselves. Recently, the idea of applying conventional lenses or prisms as photonic probes has been proposed to realize an optical pulling force. However, their sizes are far beyond the scope of optical manipulation. Here, we design a chiral metalens as the photonic probe to generate a robust optical pulling force. The induced pulling force exerted on the metalens, characterized by a broadband spectrum over 0.6 μm (from 1.517 to 2.117 μm) bandwidth, reached a maximum value of −83.76 pN/W. Moreover, under the illumination of incident light with different circular polarization states, the longitudinal optical force acting on the metalens showed a circular dichroism response. This means that the longitudinal optical force can be flexibly tuned from a pulling force to a pushing force by controlling the polarization of the incident light. This work could pave the way for a new advanced optical manipulation technique, with potential applications ranging from contactless wafer-scale fabrication to cell assembly and even course control for spacecraft.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 187
Author(s):  
Wu Zhang ◽  
Yanxiao Lin ◽  
Yusong Gao ◽  
Zekai Guo ◽  
Xiangling Li ◽  
...  

Here we numerically and experimentally studied the optical trapping on a microsphere from an axicon lensed fiber (ALF). The optical force from the fiber with different tapered lengths and by incident light at different wavelengths is calculated. Numerically, the microsphere can be trapped by the fiber with tapered outline y=±x/0.5 and y=±x at a short incident wavelength of 900 nm. While for the fiber with tapered outline y=±x/2, the microsphere can be trapped by the light with longer wavelength of 1100 nm, 1300 nm, or 1500 nm. The optical trapping to a polystyrene microsphere is experimentally demonstrated in a microfluidic channel and the corresponding optical force is derived according to the fluid flow speed. This study can provide a guidance for future tapered fibre design for optical trapping to microspheres.


NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850112 ◽  
Author(s):  
Peng Wang ◽  
Lujun Pan ◽  
Chengwei Li ◽  
Jia Zheng

Optical manipulation on microscale and nanoscale structures opens up new possibilities for assembly and control of microelectromechanical systems and nanoelectromechanical systems. Static optical force induces constant displacement while changing optical force stimulates vibration of a microcantilever/nanocantilever. The vibratory behavior of a single carbon nanocoil cantilever under optical actuation is investigated. A fitting formula to describe the laser-induced vibration characteristics is deduced based on a classical continuum model, by which the resonance frequency of the carbon nanocoil can be determined directly and accurately. This optically actuated vibration method could be widely used in stimulating quasi-1D micro/nanorod-like materials, and has potential applications in micro-/nano-opto-electromechanical systems.


2020 ◽  
Vol 6 (45) ◽  
pp. eabc3726
Author(s):  
Yoshito Y. Tanaka ◽  
Pablo Albella ◽  
Mohsen Rahmani ◽  
Vincenzo Giannini ◽  
Stefan A. Maier ◽  
...  

Optical force is a powerful tool to actuate micromachines. Conventional approaches often require focusing and steering an incident laser beam, resulting in a bottleneck for the integration of the optically actuated machines. Here, we propose a linear nanomotor based on a plasmonic particle that generates, even when illuminated with a plane wave, a lateral optical force due to its directional side scattering. This force direction is determined by the orientation of the nanoparticle rather than a field gradient or propagation direction of the incident light. We demonstrate the arrangements of the particles allow controlling the lateral force distributions with the resolution beyond the diffraction limit, which can produce movements, as designed, of microobjects in which they are embedded without shaping and steering the laser beam. Our nanomotor to engineer the experienced force can open the door to a new class of micro/nanomechanical devices that can be entirely operated by light.


2018 ◽  
Vol 73 (6) ◽  
pp. 559-563 ◽  
Author(s):  
Junyuan Dong ◽  
Guanxia Yu ◽  
Jingjing Fu ◽  
Min Luo ◽  
Wenwen Du

AbstractIn this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1467
Author(s):  
Xing Li ◽  
Jing Tang ◽  
Jonathan Baine

Based on the binary phase Fresnel zone plate (FZP), a polarization-independent metasurface lens that is able to focus incident light with any polarization state, including circular, linear, and elliptical polarizations, has been proposed and investigated. We demonstrate that the metasurface lens consisting of metal subwavelength slits can operate in a wide bandwidth in the visible range, and has a higher focusing efficiency than that of an amplitude FZP lens without phase modulation. A multi-focus FZP metasurface lens has also been designed and investigated. The proposed lens can provide potential applications in integrated nanophotonic devices without polarization limitations.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 540 ◽  
Author(s):  
Huanchun Wang ◽  
Junping Ding ◽  
Haomin Xu ◽  
Lina Qiao ◽  
Xuanjun Wang ◽  
...  

Cuprous based chalcogenides have attracted intensive research interest due to the potential applications in solar energy conversion. However, typical fabrications of these compounds are often carried out under severe conditions, such as inert gas protection, high vacuum, and/or extreme high temperature. Here we reported a one-pot process for cuprous based chalcogenides synthesis in aqueous solution. A strategy for BiCuSO nanosheets fabrication without toxic chemicals or rigorous reagents at pretty low temperatures under an ambient atmosphere was established, with the practicality of morphology controlling and the compatibility of multifarious precursors. Platelike BiCuSO with a thickness range from several to hundreds nanometers are fabricated by adjusting the alkali concentration, reaction time, and temperature. The positive effect of alkali hydroxide concentration is proposed cautiously based on the experimental results. The photocatalytic activities of BiCuSO nanosheet under UV, visible, and near-infrared irradiation were also investigated. BiCuSO obtained at room temperature with a thickness of 4.5 nm showed the most impressive efficiency to decompose organic contaminants. Our research presented a new way for cuprous sulfides fabrication, and might open up a new vista for large-scale synthesis of cuprous based materials as promising broadband spectrum light-absorbing materials.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz3646 ◽  
Author(s):  
E. Lee ◽  
T. Luo

Optical pulling force (OPF) can make a nanoparticle (NP) move against the propagation direction of the incident light. Long-distance optical pulling is highly desired for nano-object manipulation, but its realization remains challenging. We propose an NP-in-cavity structure that can be pulled by a single plane wave to travel long distances when the spherical cavity wrapping the NP has a refractive index lower than the medium. An electromagnetic multipole analysis shows that NPs made of many common materials can receive the OPF inside a lower index cavity. Using a silica-Au core-shell NP that is encapsulated by a plasmonic nanobubble, we experimentally demonstrate that a single laser can pull the Au NP-in-nanobubble structure for ~0.1 mm. These results may lead to practical applications that can use the optical pulling of NP, such as optically driven nanostructure assembly and nanoswimmers.


2018 ◽  
Author(s):  
Michiel J.M. Niesen ◽  
Annika Müller-Lucks ◽  
Rickard Hedman ◽  
Gunnar von Heijne ◽  
Thomas F. Miller

ABSTRACTDuring ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. Translation arrest peptide (AP) experiments are used to measure the external pulling forces that are exerted on the NC at different lengths during translation. To elucidate the molecular origins of these forces, a recently developed coarsegrained molecular dynamics (CGMD) is used to directly simulate the observed pulling-force profiles, thereby disentangling contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. This combination of experiment and theory reveals mechanistic features of Sec-facilitated membrane integration and protein translocation, including the interplay between transient interactions and conformational changes that occur during ribosomal translation to govern protein biogenesis.


Author(s):  
Safia Omer ◽  
Katia Brock ◽  
John Beckford ◽  
Wei-Lih Lee

ABSTRACTCurrent model for spindle positioning requires attachment of the microtubule (MT) motor cytoplasmic dynein to the cell cortex, where it generates pulling force on astral MTs to effect spindle displacement. How dynein is anchored by cortical attachment machinery to generate large spindle-pulling forces remains unclear. Here, we show that cortical clustering of Num1, the yeast dynein attachment molecule, is limited by Mdm36. Overexpression of Mdm36 results in an overall enhancement of Num1 clustering but reveals a population of dim Num1 clusters that mediate dynein-anchoring at the cell cortex. Direct imaging shows that bud-localized, dim Num1 clusters containing only ∼6 copies of Num1 molecules mediate dynein-dependent spindle pulling via lateral MT sliding mechanism. Mutations affecting Num1 clustering interfere with mitochondrial tethering but not dynein-based spindle-pulling function of Num1. We propose that formation of small ensembles of attachment molecules is sufficient for dynein anchorage and cortical generation of large spindle-pulling force.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Safia Omer ◽  
Samuel R Greenberg ◽  
Wei-Lih Lee

Cortical dynein generates pulling forces via microtubule (MT) end capture-shrinkage and lateral MT sliding mechanisms. In Saccharomyces cerevisiae, the dynein attachment molecule Num1 interacts with endoplasmic reticulum (ER) and mitochondria to facilitate spindle positioning across the mother-bud neck, but direct evidence for how these cortical contacts regulate dynein-dependent pulling forces is lacking. We show that loss of Scs2/Scs22, ER tethering proteins, resulted in defective Num1 distribution and loss of dynein-dependent MT sliding, the hallmark of dynein function. Cells lacking Scs2/Scs22 performed spindle positioning via MT end capture-shrinkage mechanism, requiring dynein anchorage to an ER- and mitochondria-independent population of Num1, dynein motor activity, and CAP-Gly domain of dynactin Nip100/p150Glued subunit. Additionally, a CAAX-targeted Num1 rescued loss of lateral patches and MT sliding in the absence of Scs2/Scs22. These results reveal distinct populations of Num1 and underline the importance of their spatial distribution as a critical factor for regulating dynein pulling force.


Sign in / Sign up

Export Citation Format

Share Document