cell biophysics
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Longfei Chen ◽  
Yantong Liu ◽  
Hongshan Xu ◽  
Linlu Ma ◽  
Yifan Wang ◽  
...  

AbstractAs a crucial biophysical property, red blood cell (RBC) deformability is pathologically altered in numerous disease states, and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs. However, there is still a gap in applying it further to point-of-care blood devices due to the large external equipment (high-resolution microscope and microfluidic pump), associated operational difficulties, and professional analysis. Herein, we revolutionarily propose a smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition both mechanically and morphologically. Deformation of the RBC population is caused by pressing the hydrogel via an integrated mechanical transfer device. The biophysical properties of the cell population are obtained by the designed smartphone algorithm. Artificial intelligence-based modeling of cell biophysics properties related to blood diseases and quality was developed for online testing. We currently achieve 100% diagnostic accuracy for five typical clinical blood diseases (90 megaloblastic anemia, 78 myelofibrosis, 84 iron deficiency anemia, 48 thrombotic thrombocytopenic purpura, and 48 thalassemias) via real-world prospective implementation; furthermore, personalized blood quality (for transfusion in cardiac surgery) monitoring is achieved with an accuracy of 96.9%. This work suggests a potential basis for next-generation blood smart health care devices.


Nano Research ◽  
2021 ◽  
Author(s):  
Mi Li ◽  
Lianqing Liu ◽  
Tomaso Zambelli

AbstractFluidic force microscopy (FluidFM), which combines atomic force microscopy (AFM) with microchanneled cantilevers connected to a pressure controller, is a technique allowing the realization of force-sensitive nanopipette under aqueous conditions. FluidFM has unique advantages in simultaneous three-dimensional manipulations and mechanical measurements of biological specimens at the micro-/nanoscale. Over the past decade, FluidFM has shown its potential in biophysical assays particularly in the investigations at single-cell level, offering novel possibilities for discovering the underlying mechanisms guiding life activities. Here, we review the utilization of FluidFM to address biomechanical and biophysical issues in the life sciences. Firstly, the fundamentals of FluidFM are represented. Subsequently, the applications of FluidFM for biophysics at single-cell level are surveyed from several facets, including single-cell manipulations, single-cell force spectroscopy, and single-cell electrophysiology. Finally, the challenges and perspectives for future progressions are provided.


2021 ◽  
pp. 227-239
Author(s):  
Hao Yang ◽  
Xue Gou ◽  
Dong Sun

2021 ◽  
pp. 153-171
Author(s):  
Yu Gao ◽  
Yuekang Li ◽  
Xiaoyun Ding
Keyword(s):  

2020 ◽  
Vol 117 (42) ◽  
pp. 25999-26007
Author(s):  
Joshua M. Grolman ◽  
Philipp Weinand ◽  
David J. Mooney

Mammalian cell morphology has been linked to the viscoelastic properties of the adhesion substrate, which is particularly relevant in biological processes such as wound repair and embryonic development where cell spreading and migration are critical. Plastic deformation, degradation, and relaxation of stress are typically coupled in biomaterial systems used to explore these effects, making it unclear which variable drives cell behavior. Here we present a nondegradable polymer architecture that specifically decouples irreversible creep from stress relaxation and modulus. We demonstrate that network plasticity independently controls mesenchymal stem cell spreading through a biphasic relationship dependent on cell-intrinsic forces, and this relationship can be shifted by inhibiting actomyosin contractility. Kinetic Monte Carlo simulations also show strong correlation with experimental cell spreading data as a function of the extracellular matrix (ECM) plasticity. Furthermore, plasticity regulates many ECM adhesion and remodeling genes. Altogether, these findings confirm a key role for matrix plasticity in stem cell biophysics, and we anticipate this will have ramifications in the design of biomaterials to enhance therapeutic applications of stem cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 833
Author(s):  
Shahid Khan

The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.


Author(s):  
С.Ю. ХАЙТЛИНА ◽  
Н.А. ОДИНЦОВА

Приведена информация о развитии технологий исследования клетки в ННЦМБ ДВО РАН, у истоков которых стоял Г.П. Пинаев. Рассказано о его участии как организатора в жизни института, биостанции Восток и двух лабораторий (лаборатория биофизики клетки и лаборатория клеточных технологий). The article reports on the development of cell investigation technologies in A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, whose originator was G.P. Pinaev. He was presented as an organizer of the life in Institute, Vostok biological station and two laboratories (Cell Biophysics laboratory, Cytotechnology laboratory).


2019 ◽  
Vol 26 (6) ◽  
pp. 319-324
Author(s):  
Victor K. Uteshev ◽  
Edith N. Gakhova ◽  
Ludmila I. Kramarova ◽  
Natalia V. Shishova ◽  
Svetlana A. Kaurova ◽  
...  

In modern biology, a search for efficient and safe ways of long-term storage of animal genomes is vital for the survival of rare and endangered species. To date, the only reliable method of prolonging the preservation of genome is deep freezing of somatic and reproductive cells, including spermatozoa. Here we overview the current state of reproductive technologies and present the cryopresevation strategies of genetic material of selected amphibian species. These strategies were developed at the Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia. Cryopreservation could help managing the threatened populations of amphibian species through genome storage and mediate the production of healthy animals from the stored material.


2019 ◽  
Author(s):  
L. X. Xu ◽  
M. S. Bhamla

The biophysical mechanism of cytoskeletal structures has been fundamental to understanding of cellular dynamics. Here, we present a mechanism for the ultrafast contraction exhibited by the unicellular ciliate Spirostomum ambiguum. Powered by a Ca2+ binding myoneme mesh architecture, Spirostomum is able to twist its two ends in the same direction and fully contract to 75% of its body length within five milliseconds, followed by a slow elongation mechanism driven by the uncoiling of the microtubules. To elucidate the principles of this rapid contraction and slow elongation cycle, we used high-speed imaging to examine the same-direction coiling of the two ends of the cell and immunofluorescence techniques to visualize and quantify the structural changes in the myoneme mesh, microtubule arrays, and the cell membrane. Lastly, we provide support for our hypotheses using a simple physical model that captures key features of Spirostomum’s ultrafast twisting contraction.SIGNIFICANCEUltrafast movements are ubiquitous in nature, and some of the most fascinating ultrafast biophysical systems are found on the cellular level. Quantitative studies and models are key to understand the biophysics of these fast movements. In this work, we study Spirostomum’s ultrafast contraction by using high-speed imaging, labeling relevant cytoskeletal structures, and building a physical model to provide a biophysical mechanism especially of the helical same direction twisting of this extremely large single cell organism. Deeper understanding of how single cells can execute extreme shape changes hold potential for advancing basic cell biophysics and also inspire new cellular inspired actuators for engineering applications.


Sign in / Sign up

Export Citation Format

Share Document