separation angle
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoji Onagawa ◽  
Kazutoshi Kudo

AbstractGoal-directed movements often require choosing an option from multiple potential goals under time constraints. However, there are limited studies on how humans change their time spent on decision-making and movement patterns according to time constraints. Here, we examined how sensorimotor strategies are selected under time constraints when the target values are uncertain. In the double-target condition, the values were uncertain until the movement onset and presented immediately afterwards. The behavior in this condition was compared to the single-target condition, in relation to time constraints and target-separation-angles. The results showed that the participants frequently used the choice-reaction even under tight time constraints, and their performance was consistently lower than that in the single-target condition. Additionally, in the double-target condition, differences in the movement trajectory depending on the time constraint and target-separation angle were confirmed. Specifically, the longer the time constraint, the higher the frequency of the intermediate behavior (to initiate movement toward the intermediate direction of two targets) or the change-of-mind behavior (to change the aiming target during movement). Furthermore, the smaller the target-separation angle, the higher the frequency of intermediate behavior, but the frequency of change-of-mind was not affected by the target-separation angle. These results suggest that the participants initiated the movement at an incomplete value judgment stage in some trials. Furthermore, they seemed to select a strategy to utilize the information obtained during the movement, taking into account the time constraints and target-separation angle. Our results show a consistent cognitive bias in choosing a higher value when multiple alternatives have different values. Additionally, we also suggest flexibility and adaptability in the movement patterns in response to time constraints.


2021 ◽  
Vol 13 (5) ◽  
pp. 2971
Author(s):  
Xinyu An ◽  
Haocai Huang ◽  
Baowei Song ◽  
Congcong Ma

A novel vortex induced piezoelectric energy converter (VIPEC) was present in this paper to harvest flow kinetic energy from the ambient environment through a piezoelectric beam. The converter consists of a circular cylinder, a pivoted beam attached to the tail of the cylinder and several piezoelectric patches. Vortex induced pressure difference acts on the beam and drives the beam to squeeze piezo patches to convert fluid dynamic energy into electric energy. Transition Shear Stress Transport (SST) combined with Scale Adaptive Simulation (SAS) model was employed to predict the turbulent flow and flow separation around the cylinder with various beam lengths at high Reynolds number of 8 × 104 based on the computational fluid dynamics (CFD) approach. The accuracy of SST-SAS model was investigated through verification and validation studies. The output voltage equation was derived from the piezoelectric constitutive equation. It was revealed that the beam length influences the flow wake pattern, the separation angle and shedding frequency greatly through changing the adverse pressure gradient around the cylinder. The wake pattern becomes symmetrical about the beam when the beam length is longer than a critical value. The length of the beam has little influence on the separation angle. When the beam length is about 1.3 times the diameter of the cylinder, the shedding frequency and output voltage achieves its maximum, and the separation angle is minimal. Maximal output voltage reaches 20 mV.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 793
Author(s):  
Kamil Bechta ◽  
Jan M. Kelner ◽  
Cezary Ziółkowski ◽  
Leszek Nowosielski

This paper presents a methodology for assessing co-channel interference that arises in multi-beam transmitting and receiving antennas used in fifth-generation (5G) systems. This evaluation is essential for minimizing spectral resources, which allows for using the same frequency bands in angularly separated antenna beams of a 5G-based station (gNodeB). In the developed methodology, a multi-ellipsoidal propagation model (MPM) provides a mapping of the multipath propagation phenomenon and considers the directivity of antenna beams. To demonstrate the designation procedure of interference level we use simulation tests. For exemplary scenarios in downlink and uplink, we showed changes in a signal-to-interference ratio versus a separation angle between the serving (useful) and interfering beams and the distance between the gNodeB and user equipment. This evaluation is the basis for determining the minimum separation angle for which an acceptable interference level is ensured. The analysis was carried out for the lower millimeter-wave band, which is planned to use in 5G micro-cells base stations.


2020 ◽  
Vol 25 (3) ◽  
pp. 133-157
Author(s):  
Md. Shahjada Tarafder ◽  
Miad Al Mursaline

AbstractThis article presents a two-dimensional steady viscous flow simulation past circular and square cylinders at low Reynolds numbers (based on the diameter) by the finite volume method with a non-orthogonal body-fitted grid. Diffusive fluxes are discretized using central differencing scheme, and for convective fluxes upwind and central differencing schemes are blended using a ‘deferred correction’ approach. A simplified pressure correction equation is derived, and proper under-relaxation factors are used so that computational cost is reduced without adversely affecting the convergence rate. The governing equations are expressed in Cartesian velocity components and solution is carried out using the SIMPLE algorithm for collocated arrangement of variables. The mesh yielding grid-independent solution is then utilized to study, for the very first time, the effect of the Reynolds number on the separation bubble length, separation angle, and drag coefficients for both circular and square cylinders. Finally, functional relationships between the computed quantities and Reynolds number (Re) are proposed up to Re = 40. It is found that circular cylinder separation commences between Re= 6.5-6.6, and the bubble length, separation angle, total drag vary as Re, Re−0.5, Re−0.5 respectively. Extrapolated results obtained from the empirical relations for the circular cylinder show an excellent agreement with established data from the literature. For a square cylinder, the bubble length and total drag are found to vary as Re and Re−0.666, and are greater than these for a circular cylinder at a given Reynolds number. The numerical results substantiate that a square shaped cylinder is more bluff than a circular one.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1790
Author(s):  
Hyun A. Son ◽  
Sungsu Lee ◽  
Jooyong Lee

In this study, the drag exerted by an accelerating fluid on a stationary 2D circular cylinder is numerically investigated using Fluent 19.2 based on the finite-volume method. The SST k–ω model is chosen as the turbulence model because of its superiority in treating the viscous near-wall region. The results are compared to literature, and the numerical methods are validated. The acceleration of the inflow is analyzed for the range of 0.0981–9.81 m/s2, and the drag for each acceleration is compared. Additionally, the effect of the initial velocity on the drag acting on the circular cylinder is investigated at two initial velocities. As a result, a supercritical region, typically found under steady state conditions, is observed. Furthermore, vortex shedding is observed at a high initial velocity. This flow characteristic is explained via comparison with respect to the recirculation length and separation angle.


2020 ◽  
Vol 188 ◽  
pp. 107894 ◽  
Author(s):  
Tianyun Yao ◽  
Juan Ye ◽  
Zichen Deng ◽  
Kai Zhang ◽  
Yongbin Ma ◽  
...  

2020 ◽  
Vol 71 (2) ◽  
pp. 110-115
Author(s):  
Rong-Bin Chen ◽  
Xiao-Ou Ou

AbstractA hairpin shaped DGS, consisting of two tilted slots with a separation angle, is studied as a unit cell in this contribution. It is further served as a microwave resonator for microstrip lowpass filter applications. Two prototype filters that respectively cascade the same unit cells and the scaled cells with a different scale ratio are analyzed. For demonstration purposes, the two prototype filters are optimally developed, fabricated and examined both from numerical simulations and from experimental validations. Results show the cascaded scaled type demonstrator features a high stopband suppression level within a wide frequency band.


Sign in / Sign up

Export Citation Format

Share Document