target condition
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 120 ◽  
pp. 103977
Author(s):  
Shuqian Shen ◽  
Wei Li ◽  
Mingji Wang ◽  
Di Wang ◽  
Yushuang Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoji Onagawa ◽  
Kazutoshi Kudo

AbstractIn goal-directed behavior, individuals are often required to plan and execute a movement with multiple competing reach targets simultaneously. The time constraint assigned to the target is an important factor that affect the initial movement planning, but the adjustments made to the starting behavior considering the time constraints specific to each target have not yet been clarified. The current study examined how humans adjusted their motor planning for double potential targets with independent time constraints under a go-before-you-know situation. The results revealed that the initial movements were modulated depending on the time constraints for potential targets. However, under tight time constraints, the performance in the double-target condition was lower than the single-target condition, which was a control condition implemented to estimate performance when one target is ignored. These results indicate that the initial movement for multiple potential targets with independent time constraints can be modified, but the planning is suboptimal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoji Onagawa ◽  
Kazutoshi Kudo

AbstractGoal-directed movements often require choosing an option from multiple potential goals under time constraints. However, there are limited studies on how humans change their time spent on decision-making and movement patterns according to time constraints. Here, we examined how sensorimotor strategies are selected under time constraints when the target values are uncertain. In the double-target condition, the values were uncertain until the movement onset and presented immediately afterwards. The behavior in this condition was compared to the single-target condition, in relation to time constraints and target-separation-angles. The results showed that the participants frequently used the choice-reaction even under tight time constraints, and their performance was consistently lower than that in the single-target condition. Additionally, in the double-target condition, differences in the movement trajectory depending on the time constraint and target-separation angle were confirmed. Specifically, the longer the time constraint, the higher the frequency of the intermediate behavior (to initiate movement toward the intermediate direction of two targets) or the change-of-mind behavior (to change the aiming target during movement). Furthermore, the smaller the target-separation angle, the higher the frequency of intermediate behavior, but the frequency of change-of-mind was not affected by the target-separation angle. These results suggest that the participants initiated the movement at an incomplete value judgment stage in some trials. Furthermore, they seemed to select a strategy to utilize the information obtained during the movement, taking into account the time constraints and target-separation angle. Our results show a consistent cognitive bias in choosing a higher value when multiple alternatives have different values. Additionally, we also suggest flexibility and adaptability in the movement patterns in response to time constraints.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang-Soo Yoon

In this paper, the effects of intensifying useful frequency and time regions (target frequency and time ranges) and the removal of detrimental frequency and time regions (conflicting frequency and time ranges) for consonant enhancement were determined. Thirteen normal-hearing (NH) listeners participated in two experiments. In the first experiment, the target and conflicting frequency and time ranges for each consonant were identified under a quiet, dichotic listening condition by analyzing consonant confusion matrices. The target frequency range was defined as the frequency range that provided the highest performance and was decreased 40% from the peak performance from both high-pass filtering (HPF) and low-pass filtering (LPF) schemes. The conflicting frequency range was defined as the frequency range that yielded the peak errors of the most confused consonants and was 20% less than the peak error from both filtering schemes. The target time range was defined as a consonant segment that provided the highest performance and was decreased 40% from that peak performance when the duration of the consonant was systematically truncated from the onset. The conflicting time ranges were defined on the coincided target time range because, if they temporarily coincide, the conflicting frequency ranges would be the most detrimental factor affecting the target frequency ranges. In the second experiment, consonant recognition was binaurally measured in noise under three signal processing conditions: unprocessed, intensified target ranges by a 6-dB gain (target), and combined intensified target and removed conflicting ranges (target-conflicting). The results showed that consonant recognition improved significantly with the target condition but greatly deteriorated with a target-conflicting condition. The target condition helped transmit voicing and manner cues while the target-conflicting condition limited the transmission of these cues. Confusion analyses showed that the effect of the signal processing on consonant improvement was consonant-specific: the unprocessed condition was the best for /da, pa, ma, sa/; the target condition was the best for /ga, fa, va, za, ʒa/; and the target-conflicting condition was the best for /na, ʃa/. Perception of /ba, ta, ka/ was independent of the signal processing. The results suggest that enhancing the target ranges is an efficient way to improve consonant recognition while the removal of conflicting ranges negatively impacts consonant recognition.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3244
Author(s):  
Sébastien Buczinski ◽  
Antonio Boccardo ◽  
Davide Pravettoni

Clinical scores are commonly used for cattle. They generally contain a mix of categorical and numerical variables that need to be assessed by scorers, such as farmers, animal caretakers, scientists, and veterinarians. This article examines the key concepts that need to be accounted for when developing the test for optimal outcomes. First, the target condition or construct that the scale is supposed to measure should be defined, and if possible, an adequate proxy used for classification should be determined. Then, items (e.g., clinical signs) of interest that are either caused by the target condition (reflective items) or that caused the target condition (formative items) are listed, and reliable items (inter and intra-rater reliability) are kept for the next step. A model is then developed to determine the relative weight of the items associated with the target condition. A scale is then built after validating the model and determining the optimal threshold in terms of sensitivity (ability to detect the target condition) and specificity (ability to detect the absence of the target condition). Its robustness to various scenarios of the target condition prevalence and the impact of the relative cost of false negatives to false positives can also be assessed to tailor the scale used based on specific application conditions.


2021 ◽  
Vol 143 ◽  
pp. 107299
Author(s):  
M.K Jindal ◽  
S. Veerabuthiran ◽  
Mainuddin ◽  
A.K. Razdan

2021 ◽  
Vol 10 (20) ◽  
pp. 4638
Author(s):  
Marco Castellana ◽  
Rossella Donghia ◽  
Luisa Lampignano ◽  
Fabio Castellana ◽  
Roberta Zupo ◽  
...  

Background. Hepatocellular carcinoma (HCC) is most commonly considered as a complication of cirrhosis. However, an increasing number of HCC in subjects with non-alcoholic fatty liver disease (NAFLD) without cirrhosis is being reported. We conducted a meta-analysis to assess the prevalence of the absence of cirrhosis in NAFLD-associated HCC. Methods. Four databases were searched until March 2021 (CRD42021242969). The original articles included were those reporting data on the presence or absence of cirrhosis among at least 50 subjects with NAFLD-associated HCC. The number of subjects with absent cirrhosis in each study was extracted. For statistical pooling of data, a random-effects model was used. Subgroup analyses according to the continent, target condition and reference standard for the diagnosis of cirrhosis were conducted. Results. Thirty studies were included, evaluating 13,371 subjects with NAFLD-associated HCC. The overall prevalence of cases without cirrhosis was 37% (95%CI 28 to 46). A higher prevalence was reported in Asia versus Europe, North America and South America (45, 36, 37 and 22%, respectively) as well as in studies adopting histology only as the reference standard for the diagnosis of cirrhosis versus histology and other modalities (e.g., radiology, endoscopy, biochemistry or overt clinical findings) (53 and 27%, respectively). No difference was found between studies including subjects with non-alcoholic steatohepatitis (NASH) only, versus NAFLD with or without NASH (p = 0.385). One in three subjects with NAFLD-associated HCC presented without cirrhosis. This should be reflected in future guidelines and surveillance programs adapted to allow for the early detection of these cancers too.


2021 ◽  
Vol 3 ◽  
Author(s):  
Hiroki Yamada ◽  
Masahiro Shinya

Motor control for forward step initiation begins with anticipatory postural adjustments (APAs). During APAs, the central nervous system controls the center of pressure (CoP) to generate an appropriate center of mass (CoM) position and velocity for various task requirements. In this study, we investigated the effect of required stepping accuracy on the CoM and CoP parameters during APA for a step initiation task. Sixteen healthy young participants stepped forward onto the targets on the ground as soon as and as fast as possible in response to visual stimuli. Two target sizes (small: 2 cm square and large: 10 cm square) and two target distances (short: 20% and long: 40% of the body height) were tested. CoP displacement during the APA and the CoM position, velocity, and extrapolated CoM at the timing of the takeoff of the lead leg were compared among the conditions. In the small condition, comparing with the large condition, the CoM position was set closer to the stance limb side during the APA, which was confirmed by the location of the extrapolated center of mass at the instance of the takeoff of the lead leg [small: 0.09 ± 0.01 m, large: 0.06 ± 0.01 m, mean and standard deviation, F(1, 15) = 96.46, p < 0.001, η2 = 0.87]. The variability in the mediolateral extrapolated center of mass location was smaller in the small target condition than large target condition when the target distance was long [small: 0.010 ± 0.002 m, large: 0.013 ± 0.004 m, t(15) = 3.8, p = 0.002, d = 0.96]. These findings showed that in the step initiation task, the CoM state and its variability were task-relevantly determined during the APA in accordance with the required stepping accuracy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255272
Author(s):  
Takashi Matsuo ◽  
Akira Ishii ◽  
Rika Ishida ◽  
Takayuki Minami ◽  
Takahiro Yoshikawa

The alterations in neural activity related to the improvement of cognitive performance, which would be leading to better academic performance, remain poorly understood. In the present study, we assessed neural activity related to the improvement of task performance resulting from academic rewards. Twenty healthy male volunteers participated in this study. All participants performed four sessions of a 1-back-Stroop task under both target and control conditions. An image indicating that the task performance of each participant was above average and categorized as being at almost the highest level was presented immediately after each session under the target condition, whereas a control image did not indicate task performance. Neural activity during the 1-back-Stroop task was recorded by magnetoencephalography. The correction rate of the 1-back-Stroop task in the final session relative to that in the first under the target condition was increased compared with the control condition. Correlation analysis revealed that the decreases in alpha band power in right Brodmann’s area (BA) 47 and left BA 7 were positively associated with the increased correction rate caused by the target condition. These findings are expected to contribute to a better understanding of the neural mechanisms underlying the improvement of cognitive performance.


2021 ◽  
Author(s):  
Ryoji Onagawa ◽  
Kazutoshi Kudo

Abstract In goal-directed behavior, individuals are often required to plan and execute a movement with multiple competing reach targets simultaneously. The time constraint assigned to the target is an important factor that affect the initial movement planning, but the adjustments made to the starting behavior considering the time constraints specific to each target have not yet been clarified. The current study examined how humans adjusted their motor planning for double potential targets with independent time constraints under a go-before-you-know situation. The results revealed that the initial movements were modulated depending on the time constraints for potential targets. However, under tight time constraints, the performance in the double-target condition was lower than the single-target condition, which was a control condition implemented to estimate performance when one target is ignored. These results indicate that the initial movement for multiple potential targets with independent time constraints can be modified, but the planning is suboptimal.


Sign in / Sign up

Export Citation Format

Share Document