symbiotic genes
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2368
Author(s):  
Vladimir A. Zhukov ◽  
Aleksandr I. Zhernakov ◽  
Anton S. Sulima ◽  
Olga A. Kulaeva ◽  
Marina S. Kliukova ◽  
...  

In garden pea (Pisum sativum L.), several symbiotic genes are known to control the development of mutualistic symbioses with nodule bacteria (NB) and arbuscular mycorrhizal fungi (AMF). Here, we studied whether the allelic state of the symbiotic genes was associated with the growth parameters of pea plants under single inoculation with NB and under double inoculation with NB + AMF. Using different statistical methods, we analyzed the dataset obtained from a pot experiment that involved 99 pea cultivars, 10 of which were characterized as having shortened internodes due to the presence of the natural mutation p.A229T in the developmental gene Le. The plant’s habitus strongly influenced most of the studied growth and yield parameters and the effectiveness of the symbiotic interactions under NB and NB + AMF inoculation. Double inoculation had different effects on Le+ (normal) and le− (dwarf) plants with regard to nitrogen and phosphorus content in seeds. Regardless of the Le-status of plants, allelic states of the symbiotic gene LykX encoding the putative receptor of Nod factors (bacterial signal molecules) were shown to be associated with seed number, thousand-seed weight, and pod number at the level of FDR < 0.001, whereas associations of allelic states of the other studied symbiotic genes were less significant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guohua Liu ◽  
Xiaoling Liu ◽  
Wei Liu ◽  
Kangning Gao ◽  
Xiaoli Chen ◽  
...  

Vigna minima is a climbing annual plant widely distributed in barren wilderness, grass land, and shrub bush of China and other countries such as Japan. However, the rhizobia nodulating with this plant has never been systematically studied. In order to reveal the biodiversity of nodulating rhizobia symbiosis with V. minima, a total of 874 rhizobium isolates were obtained from root nodules of the plant spread in 11 sampling sites of Shandong Peninsula, China, and they were designated as 41 haplotypes in the genus Bradyrhizobium based upon recA sequence analyses. By multilocus sequence analysis (MLSA) of five housekeeping genes (dnaK, glnII, gyrB, recA, and rpoB), the 41 strains representing different recA haplotypes were classified into nine defined species and nine novel genospecies. Bradyrhizobium elkanii, Bradyrhizobium ferriligni, and Bradyrhizobium pachyrhizi were the predominant and universally distributed groups. The phylogeny of symbiotic genes of nodC and nifH showed similar topology and phylogenetic relationships, in which all the representative strains were classified into two clades grouped with strains nodulating with Vigna spp., demonstrating that Vigna spp. shared common nodulating groups in the natural environment. All the representative strains formed nodules with V. minima in a nodulation test performed in green house conditions. The correlation between V. minima nodulating rhizobia and soil characteristics analyzed by CANOCO indicates that available nitrogen, total nitrogen, and organic carbon in the soil samples were the main factors affecting the distribution of rhizobia isolated in this study. This study systematically uncovered the biodiversity and distribution characteristics of V. minima nodulating rhizobia for the first time, which provided novel information for the formation of the corresponding rhizobium community.


2021 ◽  
Author(s):  
Hanna Nishida ◽  
Shohei Nosaki ◽  
Takamasa Suzuki ◽  
Momoyo Ito ◽  
Takuya Miyakawa ◽  
...  

Abstract Leguminous plants produce nodules for nitrogen fixation; however, nodule production incurs an energy cost. Therefore, as an adaptive strategy, leguminous plants halt root nodule development when sufficient amounts of nitrogen nutrients, such as nitrate, are present in the environment. Although legume NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors have recently been identified, understanding how nodulation is controlled by nitrate, a fundamental question for nitrate-mediated transcriptional regulation of symbiotic genes, remains elusive. Here, we show that two Lotus japonicus NLPs, NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1)/LjNLP4 and NRSYM2/LjNLP1, have overlapping functions in the nitrate-induced control of nodulation and act as master regulators for nitrate-dependent gene expression. We further identify candidate target genes of LjNLP4 by combining transcriptome analysis with a DNA affinity purification (DAP)-seq approach. We then demonstrate that LjNLP4 and LjNIN, a key nodulation-specific regulator and paralogue of LjNLP4, have different DNA-binding specificities. Moreover, LjNLP4-LjNIN dimerization underlies LjNLP4-mediated bifunctional transcriptional regulation. These data provide a basic principle for how nitrate controls nodulation through positive and negative regulation of symbiotic genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johan Quilbé ◽  
Léo Lamy ◽  
Laurent Brottier ◽  
Philippe Leleux ◽  
Joël Fardoux ◽  
...  

AbstractAmong legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium–legume symbiosis.


Author(s):  
O. P. Klimenko ◽  
O. A. Kulaeva ◽  
O. Y. Shtark ◽  
A. I. Zhernakov ◽  
I. A. Tikhonovich ◽  
...  

Several genes involved in development of symbiosis between pea and rhizobia haven’t yet been characterized in detail. Here, the first results of genetic analysis of pea mutants in the symbiotic genes Sym23 and Sym24 are presented.


Author(s):  
O. P. Onishchuk ◽  
O. N. Kurchak ◽  
E. E. Andronov ◽  
A. K. Kimeklis ◽  
T. S. Aksenova ◽  
...  

It was shown that in the nodule bacteria of the vetch and goats’ rue, isolated in the North Caucasian region, the phylogenetic differences of biotypes for symbiotic genes are more pronounced than for the housekeeping genes.


Author(s):  
E. P. Karasev ◽  
E. E. Andronov ◽  
E. P. Chizevskaya ◽  
N. A. Provorov

The analysis of the nucleotide polymorphism in two goatfish rhizobia biovars showed that the diversity of all gene groups corresponds to the diversity of the host plant, and the general polymorphism of chromosomal genes is higher than the symbiotic gene polymorphysm in both biovars.


Author(s):  
P. Guro ◽  
V. Safronova ◽  
A. Sazanova ◽  
I. Kuznetsova ◽  
A. Belimov ◽  
...  

A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica and O. pumilio growing on the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S rRNA gene sequence showed a significant diversity of isolates belonging to the families Rhizobiaceae (Rhizobium), Phyllobacteriaceae (Mesorhizobium, Phyllobacterium) and Bradyrhizobiaceae (Bosea, Tardiphaga). Pairs of taxonomically different strains in various combinations were isolated from some nodules of Oxytropis plants. Plant nodulation assays showed that only strains belonging to the genus Mesorhizobium (M. jarvisii, M. loti and M. huakuii) could form nitrogen-fixing nodules. The nitrogen-fixing activity of the strains was more associated with the host plant than with the species of strains. The whole genome sequences analysis showed that the strains M. loti 582 and M. huakuii 583 possessed symbiotic genes necessary for the formation of effective symbiosis and grouped into Sym-clusters. In contrast, the strain T. robiniae 581 had only a reduced number of fix genes, while the strains Phyllobacterium sp. 628 and R. lusitanum 629 possesed only individual symbiotic genes, which obviously did not participate in the formation of nodules. It was also stated that the strains M. loti 582 and M. huakuii 583 had a significantly larger set of genes related to the secretion systems T3SS and T6SS that can affect the host specificity of strains, compared with 6 commercial strains used as reference. These two strains formed nodules of two types (typical elongated and atypical rounded) on Oxytropis plants. We suggest that a possible cause of the observed phenomenon is the availability of different nodulation strategies in these strains (dependent and independent of Nod-factors). Thus, as a result of studying the collection of strains isolated from the narrow endemic species of Kamchatka Oxytropis, interesting objects were selected to study the functions of the T3SS and T6SS genes, and their role in the development of rhizobia-legume symbiosis. The prospects of using strains with gene systems for both symbiotic and non-symbiotic nodulation to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing the efficiency of nodulation are discussed.


Author(s):  
An. Kh. Baymiev ◽  
A. A. Vladimirova ◽  
E. S. Akimova ◽  
I. S. Koryakov ◽  
Al. Kh. Baymiev

The contribution of the legume plant to the formation of the genetic diversity of nodule bacteria and its effect on the activity of horizontal transfer of symbiotic genes in rhizospheric bacteria is studied.


2020 ◽  
Author(s):  
Johan Quilbé ◽  
Léo Lamy ◽  
Laurent Brottier ◽  
Philippe Leleux ◽  
Joël Fardoux ◽  
...  

AbstractAmong legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conducted genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiated singular mechanisms in the early and late nodulation steps. A forward genetic screen also showed that AeCRK, coding a novel receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2 and AeNIN, are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel new mechanisms underlying the rhizobium-legume symbiosis.


Sign in / Sign up

Export Citation Format

Share Document