scholarly journals Lead and cadmium tolerance and accumulation of proanthocyanidin- deficient mutants of the fern Athyrium yokoscense

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hiroyuki Kamachi ◽  
Kazunori Morishita ◽  
Manami Hatta ◽  
Ayaka Okamoto ◽  
Kazuma Fujii ◽  
...  

The fern Athyrium yokoscense often flourishes around mine sites in Japan and can tolerate and accumulate heavy metals such as lead (Pb) and cadmium (Cd). In this work, we examined whether proanthocyanidins, also called condensed tannins, were involved in the mechanisms of Pb and Cd tolerance and accumulation of A. yokoscense because proanthocyanidins are known to alleviate metal stress in several plant species and are present at high levels in A. yokoscense. For this purpose, we used mutant gametophytes deficient in proanthocyanidins, in which the relative proanthocyanidin contents were 20% of those of the wild-type gametophytes. Although the proanthocyanidin contents of the mutant were quite low, the growth of the mutant was very similar to that of the wild-type gametophytes even in the presence of 80 mg/kg Pb or 48 mg/kg Cd. Under the same conditions, the mutant gametophytes also accumulated Pb and Cd as much as the wild-type gametophytes did. These results indicate that the proanthocyanidins in A. yokoscense are not important for the Pb and Cd tolerance and accumulation properties.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 822A-822
Author(s):  
Jiping Sheng* ◽  
Lin Shen ◽  
Binggen Ru

Metallothioneins (MTs) has selective capability to bind heavy metals such as Cd and Pb. Former study in our lab showed that MT gene from mouse was transferred into tobacco to absorb more heavy metals from soil. This study was conducted to plant transgenic tobacco and wild type tobacco on MS media with 20 μmol·L-1 CdCl2. Transgenic tobacco grew strong, whereas the growth of wild type tobacco was severely prohibited. At 21st day, an average single transgenic plant weight was 1.5 times higher than that of wild type, and its height was also 1.33 higher. The activities of antioxidases, such as POD, CAT, PPO in transgenic tobacco leaves showed significant lower than that of wild type, which was 32.3%, 43.3%, 187.5% lower respectively. The results indicated that the transgenic MT tobacco had higher Cd tolerance, and a promising future in the application of environmental cleaning.


2020 ◽  
Vol 99 (5) ◽  
pp. 478-482
Author(s):  
N. P. Setko ◽  
A. G. Setko ◽  
Ekaterina V. Bulycheva ◽  
A. V. Tyurin ◽  
E. Yu. Kalinina

Introduction. Changes in the body of children and adolescents aimed at adapting to environmental factors are determined by genetic polymorphism in xenobiotic biotransformation genes, determining the degree of susceptibility of the child’s body to pollutants, which is the basis of modern personalized preventive medicine when managing risks to the health of the child population under the influence of environmental factors. Material and methods. Trace elements, including heavy metals, lead and cadmium, were determined in the hair of 256 practically healthy teenagers by atomic absorption spectrophotometry. Depending on the level of content of the latter, two groups of adolescents were formed to determine six genes of the cytochrome P-450 family. Group 1 consisted of adolescents whose cadmium lead content exceeded the average Russian indices. The second group included adolescents whose heavy metals were above the level of average Russian standards. Results. Studies have shown that in adolescents of the 1st group, compared with the data of adolescents of the 2nd group, an increase in the number of carriers of two mutant alleles at the locus rs 1048943 (gene CYP1A1) is 3.08 times, rs 464621 (gene CYP1A1) is 1. 8 times; locus rs 2069522 (CYP1A2 gene) 3.63 times; locus rs 1799853 (CYP2C9 * 2 gene) 4.5 times; locus rs 1057910 (gene CYP2C9 * 3) 3.8 times and locus rs 2279343 (gene CYP2B6) 4.25 times. Moreover, carriers of two normal alleles in adolescents of the first group at the locus rs 1048943 (gene CYP1A1) were 5.14 times; locus rs 2279343 (CYP2B6 gene) was 6.5 fold less than among adolescents of the 2nd group; and at the locus rs 464621 (gene CYP1A1), rs 2069522 (gene CYP1A2), rs 1799853 (gene CYP2C9 * 2), rs 1057910 (gene CYP2C9 * 3) there were no carriers of normal homozygotes. Conclusion. Group 1 adolescents with heavy metal contamination of the body are carriers significantly in a greater number of pathological mutations in the genes of the cytochrome P-450 detoxification system in comparison with data from group 2 adolescents.


Author(s):  
Mahmud Mohammed Imam ◽  
Zahra Muhammad ◽  
Amina Zakari

In this research work the concentration of zinc, copper, lead, chromium, cadmium, and nickel in cow milk samples obtained from four different grazing areas   (kakuri, kudendan, malali, kawo) of Kaduna metropolis. The samples were digested by wet digestion technique .The trace element were determined using bulk scientific model VPG 210 model  Atomic Absorption Spectrophotometer (AAS).. The concentration of the determined heavy metal were The result revealed that Cr,  Ni and Cd were not detected in milk samples from Kawo, Malali  and Kudendan whereas lead (Pb) is detected in all samples and found to be above  the stipulated limits of recommended dietary allowance (NRC,1989) given as 0.02mg/day. Cu and Zn are essential elements needed by the body for proper metabolism and as such their deficiency or excess is very dangerous for human health. However, they were found in all samples and are within the recommended limits while Cd (2.13 – 3.15 mg/kg) in milk samples from Kakuri was found to be above such limit (0.5mg/day). Cow milk samples analyzed for heavy metals in this research work pose a threat of lead and cadmium toxicity due to their exposure to direct sources of air, water and plants in these grazing areas, thereby, resulting to a potential health risk to the consumers.


1999 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
C. Dierkes ◽  
W. F. Geiger

Runoff from highways contains significant loads of heavy metals and hydrocarbons. According to German regulations, it should be infiltrated over embankments to support groundwater-recharge. To investigate the decontaminating effect of greened embankments, soil-monoliths from highways with high traffic densities were taken. Soils were analyzed to characterize the contamination in relation to distance and depth for lead, zinc, copper, cadmium, PAH and MOTH. Lysimeters were charged in the field and laboratory with highway runoff to study the effluents under defined conditions. Concentrations of pollutants in roadside soils depend on the age of embankments and traffic density. Highest concentrations were found in the upper 5 cm of the soil and within a distance of up to two metres from the street. Concentrations of most pollutants decreased rapidly with depth and distance. Lead and cadmium could not be detected in lysimeter effluent. Zinc and copper were found in concentrations that did not exceed drinking water quality limits.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41482-41487
Author(s):  
Chen-Chen Zhu ◽  
Ning Bao ◽  
Xiao-Lei Huo

Children's shoes are potential sources of toxic heavy metals, especially for younger children.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e039541
Author(s):  
Jun Ho Ji ◽  
Mi Hyeon Jin ◽  
Jung-Hun Kang ◽  
Soon Il Lee ◽  
Suee Lee ◽  
...  

ObjectivesTo investigate the associations between heavy metal exposure and serum ferritin levels, physical measurements and type 2 diabetes mellitus (DM).DesignA retrospective cohort study.SettingChangwon, the location of this study, is a Korean representative industrial city. Data were obtained from medical check-ups between 2002 and 2018.ParticipantsA total of 34 814 male subjects were included. Of them, 1035 subjects with lead exposure, 200 subjects with cadmium exposure and the 33 579 remaining were assigned to cohort A, cohort B and the control cohort, respectively. Data including personal history of alcohol and smoking, age, height, weight, the follow-up duration, haemoglobin A1c (HbA1c), fasting blood sugar (FBS), ferritin levels, and lead and cadmium levels within 1 year after exposure were collected.Primary outcome measureIn subjects without diabetes, changes in FBS and HbA1c were analysed through repeated tests at intervals of 1 year or longer after the occupational exposure to heavy metals.ResultsIn Cohort A, DM was diagnosed in 33 subjects. There was a significant difference in lead concentrations between the subjects diagnosed with DM and those without DM during the follow-up period (3.94±2.92 mg/dL vs 2.81±2.03 mg/dL, p=0.002). Simple exposure to heavy metals (lead and cadmium) was not associated with DM in Cox regression models (lead exposure (HR) 1.01, 95% CI: 0.58 to 1.77, p 0.971; cadmium exposure HR 1.48, 95% CI: 0.61 to 3.55, p=0.385). Annual changes in FBS according to lead concentration at the beginning of exposure showed a positive correlation (r=0.072, p=0.032).ConclusionOur findings demonstrated that simple occupational exposure to heavy metals lead and cadmium was not associated with the incidence of DM. However, lead concentrations at the beginning of the exposure might be an indicator of DM and glucose elevations.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Dilna Damodaran ◽  
Raj Mohan Balakrishnan ◽  
Vidya K. Shetty

Optimum concentrations of heavy metals like copper, cadmium, lead, chromium, and zinc in soil are essential in carrying out various cellular activities in minimum concentrations and hence help in sustaining all life forms, although higher concentration of these metals is lethal to most of the life forms.Galerina vittiformis, a macrofungus, was found to accumulate these heavy metals into its fleshy fruiting body in the order Pb(II) > Cd(II) > Cu(II) > Zn(II) > Cr(VI) from 50 mg/kg soil. It possesses various ranges of potential cellular mechanisms that may be involved in detoxification of heavy metals and thus increases its tolerance to heavy metal stress, mainly by producing organic acids and phytochelatins (PCs). These components help in repairing stress damaged proteins and compartmentalisation of metals to vacuoles. The stress tolerance mechanism can be deduced by various analytical tools like SEM-EDX, FTIR, and LC-MS. Production of two kinds of phytochelatins was observed in the organism in response to metal stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongcan Chen ◽  
Jun Liang ◽  
Zhicong Chen ◽  
Bo Wang ◽  
Tong Si

Heavy metal contamination is an environmental issue on a global scale. Particularly, cadmium poses substantial threats to crop and human health. Saccharomyces cerevisiae is one of the model organisms to study cadmium toxicity and was recently engineered as a cadmium hyperaccumulator. Therefore, it is desirable to overcome the cadmium sensitivity of S. cerevisiae via genetic engineering for bioremediation applications. Here we performed genome-scale overexpression screening for gene targets conferring cadmium resistance in CEN.PK2-1c, an industrial S. cerevisiae strain. Seven targets were identified, including CAD1 and CUP1 that are known to improve cadmium tolerance, as well as CRS5, NRG1, PPH21, BMH1, and QCR6 that are less studied. In the wild-type strain, cadmium exposure activated gene transcription of CAD1, CRS5, CUP1, and NRG1 and repressed PPH21, as revealed by real-time quantitative PCR analyses. Furthermore, yeast strains that contained two overexpression mutations out of the seven gene targets were constructed. Synergistic improvement in cadmium tolerance was observed with episomal co-expression of CRS5 and CUP1. In the presence of 200 μM cadmium, the most resistant strain overexpressing both CAD1 and NRG1 exhibited a 3.6-fold improvement in biomass accumulation relative to wild type. This work provided a new approach to discover and optimize genetic engineering targets for increasing cadmium resistance in yeast.


Sign in / Sign up

Export Citation Format

Share Document