On the diurnal cycle of rainfall and convection over Lake Victoria and its catchment. Part 2: Meteorological factors in the diurnal and seasonal cycles

Author(s):  
Sharon E. Nicholson ◽  
Adam T. Hartman ◽  
Douglas A. Klotter

AbstractThe purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development.

Author(s):  
Sharon E. Nicholson ◽  
Adam T. Hartman ◽  
Douglas A. Klotter

AbstractThis article examines the diurnal cycle of lake-effect rains over Lake Victoria and of rainfall in the surrounding catchment. The analysis focuses on four months, which represent the two wet seasons (April and November) and the two dry seasons (February and July). Lake-effect rains are strongest in April, weakest in July. In all cases there is a nocturnal rainfall maximum over the lake and a daytime maximum over the catchment, with the transition between rainfall over the lake and over the catchment occurring between 1200 and 1500 LST. During the night the surrounding catchment is mostly dry. Conversely, little to no rain falls over the lake during the afternoon and early evening. In most cases the maximum over the lake occurs at either 0600 or 0900 LST and the maximum over the catchment occurs around 1500 to 1800 LST. The diurnal cycle of Mesoscale Convective Systems (MCSs) parallels that of over-lake rainfall. MCS initiation generally begins over the catchment around 1500 LST and increases at 1800 LST. MCS initiation over the lake begins around 0300 LST and continues until 1200 LST. While some MCSs originate over the highlands to the east of the lake, most originate in situ over the lake. Maximum MCS activity over the lake occurs at 0600 LST and is associated with the systems that initiate in situ.


2016 ◽  
Vol 73 (11) ◽  
pp. 4553-4571 ◽  
Author(s):  
Diana R. Stovern ◽  
Elizabeth A. Ritchie

Abstract This study uses the WRF ARW to investigate how different atmospheric temperature environments impact the size and structure development of a simulated tropical cyclone (TC). In each simulation, the entire vertical virtual temperature profile is either warmed or cooled in 1°C increments from an initial specified state while the initial relative humidity profile and sea surface temperature are held constant. This alters the initial amount of convective available potential energy (CAPE), specific humidity, and air–sea temperature difference such that, when the simulated atmosphere is cooled (warmed), the initial specific humidity and CAPE decrease (increase), but the surface energy fluxes from the ocean increase (decrease). It is found that the TCs that form in an initially cooler environment develop larger wind and precipitation fields with more active outer-core rainband formation. Consistent with previous studies, outer-core rainband formation is associated with high surface energy fluxes, which leads to increases in the outer-core wind field. A larger convective field develops despite initializing in a low CAPE environment, and the dynamics are linked to a wider field of surface radial inflow. As the TC matures and radial inflow expands, large imports of relative angular momentum in the boundary layer continue to drive expansion of the TC’s overall size.


Author(s):  
Sharon E. Nicholson ◽  
Douglas Klotter ◽  
Adam T. Hartman

AbstractThis article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.


2018 ◽  
Vol 31 (19) ◽  
pp. 8005-8021 ◽  
Author(s):  
Dongdong Peng ◽  
Tianjun Zhou ◽  
Lixia Zhang ◽  
Bo Wu

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.


2010 ◽  
Vol 10 (14) ◽  
pp. 6873-6888 ◽  
Author(s):  
D. Peterson ◽  
J. Wang ◽  
C. Ichoku ◽  
L. A. Remer

Abstract. The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000–2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-km gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above ~5700 m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts.


2018 ◽  
Vol 69 (10) ◽  
pp. 1009 ◽  
Author(s):  
Abdullahi Muhammad Labbo ◽  
Maryam Mehmood ◽  
Malik Nadeem Akhtar ◽  
Muhammad Jawad Khan ◽  
Aamira Tariq ◽  
...  

Mungbean (Vigna radiata L.) is a valuable legume crop grown in tropical and subtropical areas of Asia. Drought is one of the major factors hindering its growth globally. APETALA2/ethylene-responsive element factor binding proteins (AP2/ERF) are an important family of plant-specific transcription factors (TFs) involved in drought-stress tolerance. We identified 71 AP2/ERF TFs in the mungbean genome by using bioinformatics tools and classified them into subfamilies: AP2 (16 members), ERF (22), RAV (2), DREB (30) and soloist (other proteins with no domain, 1). Members of DREB play a critical role in drought-stress tolerance. Ten-day-old mungbean plants cv. AZRI-06 were exposed to drought stress by complete withholding of water for 7 days. Root samples were collected from control and drought-stressed plants, and the expression pattern of 30 identified VrDREB genes was determined by qPCR. Most VrDREB genes exhibited differential expression in response to drought. Five genes (VrDREB5, VrDREB12, VrDREB13, VrDREB22, VrDREB30) were highly expressed under drought stress and might be considered excellent candidates for further functional analysis and for improvement of mungbean drought tolerance.


2018 ◽  
Vol 146 (2) ◽  
pp. 641-658
Author(s):  
Amanda Mercer ◽  
Rachel Chang ◽  
Ian Folkins

Measurements from the Aircraft Communications, Addressing, and Reporting System (ACARS) dataset between 2005 and 2014 are used to construct diurnal vertical cross sections of relative humidity in the lower troposphere at six airports in the U.S. Midwest. In summer, relative humidity maxima occur between 2 and 3 km during the overnight hours of 0300–0900 local solar time (LST). These maxima coincide with negative anomalies in temperature and positive anomalies in specific humidity. Vertical winds from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis dataset show that the height and diurnal timing of these positive relative humidity anomalies are consistent with the regional diurnal pattern of vertical motion. During the day, there is rising motion over the Rocky Mountains and subsidence over the Midwest, while conversely at night, there is sinking motion over the mountains and rising motion over the Midwest. The nocturnal relative humidity maxima over the Midwest are the strongest direct observational evidence to date of this mountain–plains solenoidal circulation, and provide a useful diagnostic for testing the strength of this circulation in climate and reanalysis models. There is significant interannual variability in the strength of the nocturnal relative humidity maxima. In 2011, the relative humidity maxima are very pronounced. In 2014, however, they are almost nonexistent. Finally, the relative humidity maxima are discussed in relation to the low-level jet (LLJ). The LLJ appears to be too low to directly contribute to the nocturnal relative humidity maxima.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. K1-K10 ◽  
Author(s):  
Emma Brand ◽  
Charles Hurich ◽  
Sharon Deemer

Seismic interferometry applied to walkaway vertical seismic profile data has significant potential for imaging the steeply dipping structures often encountered in hard-rock minerals exploration. Using the interferometry process, surface shots can be redatumed to the borehole receivers resulting in virtual shot gathers. The virtual shot gathers can then be processed using a standard common midpoint (CMP) processing flow. Carrying out this procedure for a subvertical borehole results in a geometry that is optimal for imaging structures that are near vertical. Field acquisition parameters play a critical role in recovering reliable virtual source images. We evaluated the major factors that play a role in designing a field acquisition program with the objective of providing guidance to field practitioners. The major issue to be considered is insuring that correlation gathers created in the interferometry process have a stationary phase component that when summed produces events with correct timing and cancellation of nonstationary components. Consistent with previous work, the ray-tracing-based analysis identified the surface source spacing, surface source aperture, and dominant frequency as the most critical parameters. The analysis indicated that because of the high apparent velocities typically encountered in hard rock terrains, a surface source spacing of 20 m and an aperture of 1000 m will result in stationary phase components and avoid spatial alias in the correlation gathers for frequencies as high as 80 Hz. However, closer spacing of the surface sources provided more traces in the correlation gathers resulting in fewer artifacts during summation. These results were further verified by acoustic wave modeling that provided data from more complex targets that were processed through a complete interferometry and CMP flow. The analysis indicated that with care in designing field acquisition parameters, seismic interferometry is realizable within the terrain and access restrictions imposed by many mining camps.


2016 ◽  
Vol 73 (9) ◽  
pp. 3719-3737 ◽  
Author(s):  
David M. Romps

Abstract By deriving analytical solutions to radiative–convective equilibrium (RCE), it is shown mathematically that convective available potential energy (CAPE) exhibits Clausius–Clapeyron (CC) scaling over a wide range of surface temperatures up to 310 K. Above 310 K, CAPE deviates from CC scaling and even decreases with warming at very high surface temperatures. At the surface temperature of the current tropics, the analytical solutions predict that CAPE increases at a rate of about 6%–7% per kelvin of surface warming. The analytical solutions also provide insight on how the tropopause height and stratospheric humidity change with warming. Changes in the tropopause height exhibit CC scaling, with the tropopause rising by about 400 m per kelvin of surface warming at current tropical temperatures and by about 1–2 km K−1 at surface temperatures in the range of 320–340 K. The specific humidity of the stratosphere exhibits super-CC scaling at temperatures moderately warmer than the current tropics. With a surface temperature of the current tropics, the stratospheric specific humidity increases by about 6% per kelvin of surface warming, but the rate of increase is as high as 30% K−1 at warmer surface temperatures.


2013 ◽  
Vol 2 (4) ◽  
pp. 95 ◽  
Author(s):  
Nelson Turyahabwe ◽  
David Mwesigye Tumusiime ◽  
Willy Kakuru ◽  
Bernard Barasa

<p>With increasing population, coupled with land shortage and weather variations, wetlands in Uganda have continued to face degradation due to mainly conversion for agricultural, industrial and settlement purposes. The objective of this study was to determine the spatial and temporal wetland use/cover changes and local perceptions attributed to these changes. The study utilized three sets of ortho-rectified and cloud free Landsat TM/ETM+/MSS temporal images (30 m) of 1986, 2000 and 2011. The classification procedures were carried out using an Integrated Land and Water Information System (ILWIS) software version 3.7. A wetland classification system for Uganda developed by the National Biomass Study, 2003 was adopted to describe the wetland use/cover types. The classified images were validated in a ground truthing exercise using Global Positioning System (GPS) to improve on the classification accuracy. Key informant interviews and focus group discussions were conducted with communities adjacent to the wetlands in each of three of the ten Ugandan agro-ecological zones to determine the underlying drivers of wetland use/cover changes, while household interviews generated information on local perceptions of the changes. Significant changes were mainly observed in wetland use/cover between 1986 and 2011. Major factors responsible for these changes were subsistence farming due to intensification of growing paddy rice in Kyoga plains, an influx of migrants who accessed wetlands for daily subsistence (livestock grazing) in South western farmlands and proximity to urban centres in the Lake Victoria Crescent. In all the sampled agro-ecological zones, increased crop farming in wetlands was due to changing opportunities created by existent large markets for wetland crops. Majority (60%) of the local people perceived wetlands in their proximity to have undergone high degradation within the last 10 years, and to have declined in quantity and quality of vegetation, soil fertility and water levels. There was a noticeable variation across the sampled agro-ecological zones, with the highest proportion of local communities perceiving degradation being in Kyoga plains (76%), followed by Lake Victoria crescent (63%) and South-western farmlands (41%). Locally perceived threats to wetlands were mainly from crop growing that accounted for 33% of the frequency of mentioned threats, collection of wetland resources (30%), and prolonged floods and droughts (12%). This study confirms the importance of economic opportunities from new market outlets and migration in its various forms as key factors in land use change, especially at timescales of a couple of decades.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document