scholarly journals Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas W. Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.

Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of carbohydrate polymers, nucleic acids and proteins. Carbohydrates within P. aeruginosa biofilms include neutral and mannose-rich Psl, and cationic Pel composed of N-acetyl-galactosamine and N-acetyl-glucosamine. Here we show that P. aeruginosa biofilms display ligands for the C-type lectin receptors mannose receptor (MR, CD206) and Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209). Binding of MR and DC-SIGN to P. aeruginosa biofilms is carbohydrate-and calcium-dependent and extends to biofilms formed by clinical isolates. Confocal analysis of P. aeruginosa biofilms shows abundant DC-SIGN ligands among bacteria aggregates while MR ligands concentrate into discrete clusters. DC-SIGN ligands are also detected in planktonic P. aeruginosa cultures and depend on the presence of the common polysaccharide antigen. Carbohydrates purified from P. aeruginosa biofilms are recognised by DC-SIGN and MR; both receptors preferentially bind the high molecular weight fraction (HMW; >132,000Da) with KDs in the nM range. HMW preparations contain 74.9-80.9% mannose, display α-mannan segments and alter the morphology of human dendritic cells without causing obvious changes in cytokine responses. Finally, HMW interferes with the endocytic activity of cell-associated MR and DC-SIGN. This work identifies MR and DC-SIGN as receptors for bacterial biofilms and highlights the potential for biofilm-associated carbohydrates as immunomodulators through engagement of C-type lectin receptors.Author SummarySelective engagement of pattern recognition receptors during infection guides the decision-making process during induction of immune responses. This work identifies mannose-rich carbohydrates within bacterial biofilms as novel molecular patterns associated with bacterial infections. P. aeruginosa biofilms and biofilm-derived carbohydrates bind two important lectin receptors, MR (CD206) and DC-SIGN (CD209), involved in recognition of self and immune evasion. Abundance of MR and DC-SIGN ligands in the context of P. aeruginosa biofilms could impact immune responses and promote chronic infection.


2002 ◽  
Vol 197 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Ludovic Tailleux ◽  
Olivier Schwartz ◽  
Jean-Louis Herrmann ◽  
Elisabeth Pivert ◽  
Mary Jackson ◽  
...  

Early interactions between lung dendritic cells (LDCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, are thought to be critical for mounting a protective anti-mycobacterial immune response and for determining the outcome of infection. However, these interactions are poorly understood, at least at the molecular level. Here we show that M. tuberculosis enters human monocyte-derived DCs after binding to the recently identified lectin DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). By contrast, complement receptor (CR)3 and mannose receptor (MR), which are the main M. tuberculosis receptors on macrophages (Mϕs), appeared to play a minor role, if any, in mycobacterial binding to DCs. The mycobacteria-specific lipoglycan lipoarabinomannan (LAM) was identified as a key ligand of DC-SIGN. Freshly isolated human LDCs were found to express DC-SIGN, and M. tuberculosis–derived material was detected in CD14−HLA-DR+DC-SIGN+ cells in lymph nodes (LNs) from patients with tuberculosis. Thus, as for human immunodeficiency virus (HIV), which is captured by the same receptor, DC-SIGN–mediated entry of M. tuberculosis in DCs in vivo is likely to influence bacterial persistence and host immunity.


2007 ◽  
Vol 51 (7) ◽  
pp. 2313-2323 ◽  
Author(s):  
Diego Serrano-Gómez ◽  
Rocío T. Martínez-Nuñez ◽  
Elena Sierra-Filardi ◽  
Nuria Izquierdo ◽  
María Colmenares ◽  
...  

ABSTRACT AM3 (Inmunoferon) is an orally effective immunomodulator that influences the regulatory and effector functions of the immune system whose molecular mechanisms of action are mostly unknown. We hypothesized that the polysaccharide moiety of AM3 (IF-S) might affect immune responses by modulating the lectin-dependent pathogen recognition abilities of human dendritic cells. IF-S inhibited binding of viral, fungal, and parasite pathogens by human monocyte-derived dendritic cells in a dose-dependent manner. IF-S specifically impaired the pathogen recognition capabilities of DC-SIGN, as it reduced the attachment of Candida, Aspergillus, and Leishmania to DC-SIGN transfectants. IF-S also inhibited the interaction of DC-SIGN with both its cellular counterreceptor (intercellular adhesion molecule 3) and the human immunodeficiency virus (HIV) type 1 gp120 protein and blocked the DC-SIGN-dependent capture of HIV virions and the HIV trans-infection capability of DC-SIGN transfectants. IF-S promoted DC-SIGN internalization in DCs without affecting mannose receptor expression, and 1D saturation transfer difference nuclear magnetic resonance demonstrated that IF-S directly interacts with DC-SIGN on the cell surface. Therefore, the polysaccharide moiety of AM3 directly influences pathogen recognition by dendritic cells by interacting with DC-SIGN. Our results indicate that DC-SIGN is the target for an immunomodulator and imply that the adjuvant and immunomodulatory actions of AM3 are mediated, at least in part, by alteration of the DC-SIGN functional activities.


Author(s):  
Douglas R. Keene ◽  
B. Kerry Maddox ◽  
Marie B. Spurgin ◽  
Lynn Y. Sakai ◽  
Robert W. Glanville

A mouse monoclonal antibody was used to identify beaded aggregates found in guanidine extracts of human amnion as assemblies of fibrillin molecules. These aggregates were also shown to be a major component of extracellular matrix microfibrils. We further demonstrated that the periodicity of these aggregates can be increased when subjected to mechanical stress.Human amnion was extracted with guanidine and the extracted material purified using ion exchange and molecular sieve chromatography. A high molecular weight fraction was precipitated by dialyzing against dilute acetic acid. Part of the precipitate was suspended in 0.2 M ammonium bicarbonate buffer and rotary shadowed. A second portion was resuspended in culture medium containing antibody which recognizes matrix microfibrils, diluted 1:5 in ammonium bicarbonate and reacted for 120 minutes at room temperature. Antibody labeled precipitate was washed by repeated pelleting and resuspension in buffer and then incubated in Janssen GAM 5 nm gold conjugate for 60 minutes at room temperature.


1993 ◽  
Vol 70 (06) ◽  
pp. 0978-0983 ◽  
Author(s):  
Edelmiro Regano ◽  
Virtudes Vila ◽  
Justo Aznar ◽  
Victoria Lacueva ◽  
Vicenta Martinez ◽  
...  

SummaryIn 15 patients with acute myocardial infarction who received 1,500,000 U of streptokinase, the gradual appearance of newly synthesized fibrinogen and the fibrinopeptide release during the first 35 h after SK treatment were evaluated. At 5 h the fibrinogen circulating in plasma was observed as the high molecular weight fraction (HMW-Fg). The concentration of HMW-Fg increased continuously, and at 20 h reached values higher than those obtained from normal plasma. HMW-Fg represented about 95% of the total fibrinogen during the first 35 h. The degree of phosphorylation of patient fibrinogen increased from 30% before treatment to 65% during the first 5 h, and then slowly declined to 50% at 35 h.The early rates of fibrinopeptide A (FPA) and phosphorylated fibrinopeptide A (FPAp) release are higher in patient fibrinogen than in isolated normal HMW-Fg and normal fibrinogen after thrombin addition. The early rate of fibrinopeptide B (FPB) release is the same for the three fibrinogen groups. However, the late rate of FPB release is higher in patient fibrinogen than in normal HMW-Fg and normal fibrinogen. Therefore, the newly synthesized fibrinogen clots faster than fibrinogen in the normal steady state.In two of the 15 patients who had occluded coronary arteries after SK treatment the HMW-Fg and FPAp levels increased as compared with the 13 patients who had patent coronary arteries.These results provide some support for the idea that an increased synthesis of fibrinogen in circulation may result in a procoagulant tendency. If this is so, the HMW-Fg and FPAp content may serve as a risk index for thrombosis.


1981 ◽  
Vol 46 (03) ◽  
pp. 612-616 ◽  
Author(s):  
U Schmitz-Huebner ◽  
L Balleisen ◽  
F Asbeck ◽  
J van de Loo

SummaryHigh and low molecular weight heparin fractions obtained by gel filtration chromatography of sodium mucosal heparin were injected subcutaneously into six healthy volunteers and compared with the unfractionated substance in a cross-over trial. Equal doses of 5,000 U were administered twice daily over a period of three days and heparin activity was repeatedly controlled before and 2, 4, 8 hrs after injection by means of the APTT, the anti-Xa clotting test and a chromogenic substrate assay. In addition, the in vivo effect of subcutaneously administered fractionated heparin on platelet function was examined on three of the volunteers. The results show that s.c. injections of the low molecular weight fraction induced markedly higher anti-Xa activity than injections of the other preparations. At the same time, APTT results did not significantly differ. Unfractionated heparin and the high molecular weight fraction enhanced ADP-induced platelet aggregation and collagen-mediated MDA production, while the low molecular weight fraction hardly affected these assays, but potently inhibited thrombin-induced MDA production. All heparin preparations stimulated the release of platelet Factor 4 in plasma. During the three-day treatment periods, no side-effects and no significant changes in the response to heparin injections were detected.


1968 ◽  
Vol 108 (4) ◽  
pp. 641-646 ◽  
Author(s):  
A. Polson ◽  
W. Katz

1. The preparation of tanned gelatin spheres and granules from high-molecular-weight gelatin is described. This material is comparatively hard, giving high flow rates, is insoluble in water at temperatures between 0° and 100° and is resistant to digestion by trypsin and chymotrypsin. The high-molecular-weight fraction of gelatin was prepared by precipitation with polyethylene glycol, and the spheres and granules prepared from this fraction were hardened and insolubilized by tanning with either formalin or chromium salts or both. 2. The spheres and granules were used successfully for the separation of protein molecules and other protein-aceous materials ranging in molecular weight from 200 to greater than 6000000. This gel exclusion material has several properties superior to those of other products used for similar purposes. Further, it was noticed that the porosity of the spheres differed considerably from that of the granules.


1965 ◽  
Vol 49 (1) ◽  
pp. 131-149 ◽  
Author(s):  
F. Norman Briggs ◽  
Martin Fleishman

A high molecular weight fraction of a soluble Marsh muscle-relaxing preparation has been shown to contain a calcium-complexing substance. By examining the nature of the competition between this fraction and chelex-100 for calcium at various total calcium concentrations it has been possible to calculate the concentration and calcium stability constant of this calcium-complexing substance. Taking into account dilutions which occur during the preparation of fractions containing this substance its concentration may be estimated at about 2·10-4 in muscle and its calcium stability constant was found to be about 1.5·105 M-1. Preliminary evidence suggests that the calcium-binding substance is a protein.


1953 ◽  
Vol 26 (1) ◽  
pp. 102-114 ◽  
Author(s):  
I. M. Kolthoff ◽  
R. G. Gutmacher

Abstract The sorption capacities toward GR-S five commercial carbon blacks are in decreasing order: Spheron-6, Vulcan-1, Philblack-0, Sterling-105, Philblack-A. Apparently, the sorption is not related to surface area. The sorption on Vulcan-1 of GR-S from its solutions in seven different solvents or mixtures of solvents increases with decreasing solvent power for the rubber. The sorption curves of two “cold rubbers,” polymerized at −10 and +5° respectively, showed little difference from that of 50° GR-S. Previous heating of carbon black in nitrogen at 500 or 1100° increased the sorption by about 20 per cent over unheated carbon. Air-heating of carbon black at 425° did not cause a difference in the sorption from benzene solution, but produced an increase in the sorption of rubber from n-heptane solution. In the range 75% butadiene-25% styrene to 5% butadiene-95% styrene, there is practically no effect of the degree of unsaturation on the sorption. Polystyrene of high intrinsic viscosity exhibits a peculiar behavior with furnace blacks. Vulcan-1 sorbed microgel as well as the sol fraction from n-heptane solutions of GR-S containing microgel (conversion 74.7 and 81.5 per cent). There was no appreciable difference in the amount of sorption of rubber fractions having average molecular weights varying from 433,000 to 85,000. There is little change in the amount sorbed after two hours of shaking, but the intrinsic viscosity of the residual rubber decreases with time. The low molecular-weight rubber is sorbed more rapidly, but is slowly replaced by the more tightly sorbed high molecular weight fraction. Partial fractionation of a rubber sample can be achieved by allowing the rubber solution to flow through a column of weakly sorbing carbon black. A large portion of the sorbed rubber can be recovered from the column by washing it with a good solvent such as xylene. Bound rubber is produced by intimate mixing of equal parts of carbon black and rubber swollen in chloroform, when the mixture is dried in vacuum at 80° or at room temperature. Milling is not essential to get bound rubber.


2002 ◽  
Vol 115 (12) ◽  
pp. 2603-2611 ◽  
Author(s):  
Martha Triantafilou ◽  
Kensuke Miyake ◽  
Douglas T. Golenbock ◽  
Kathy Triantafilou

The plasma membrane of cells is composed of lateral heterogeneities,patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein(hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5(GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-α secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.


Sign in / Sign up

Export Citation Format

Share Document