Crystal Structure Defects and Imperfections

2021 ◽  
pp. 1-12

Abstract Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.

It is a familiar fact, first pointed out by one of the present authors many years ago, that metal wires can be prepared which, when stretched, glide on a number of parallel faces. Such wires are usually spoken of as single crystals of the metal, and X-ray analysis has proved that the directions of the crystallographic axes of the metal are fixed throughout the wire. If, however, the wire consist of atoms arranged on an ideal crystal lattice, there seems no reason why there should be, among a set of crystallographically equivalent glide planes, certain more or less regularly spaced planes of weakness, along which glide takes place. The existence of these slip planes, periodically spaced, may be interpreted as evidence of a periodic secondary structure inherent in the crystal, for the preferential glide is not a cumulative process; that is, the resistance to glide along such planes does not become less as slip progresses, but greater. The phenomenon is, therefore, not due to certain chance planes, among a set of almost identical planes, starting as glide planes and then continuing as such, rather than their neighbours, because of progressive softening, but rather to certain preferred planes being disposed to glide. On the other hand, the phenomenon may be set down as due to a secondary structure not inherent in the crystal, but called into existence by strain, a dislocation of any one crystal plane producing a dislocation of a distant plane by some process of accumulation of small disturbances handed on from plane to plane. A third possibility is that the preferred slip planes would not be found in a lattice of perfectly pure metal, but are due to impurities, which may be either foreign metals or dissolved gases; these maybe supposed to segregate into particular planes and have a weakening effect. In this connection reference may be made to the electrical resistance of metals at low temperatures. Kapitza, in his extended investigations of the effect of a magnetic field on the resistance of metals, attributes the residual resistance of a metal to structural imperfections of the lattice, which he appears to associate with minute impurities. “It is known that in a metal which is not in a perfect crystalline state, and which contains even small traces of impurity, there exists a disturbance which increases the specific resistance.” The residual resistance is well known to decrease with increasing purity, as particularly exemplified by gold and platinum, while for mercury there is no residual resistance. If, therefore, the preferential glide on certain planes is due to impurities, pure mercury should not show it.


Author(s):  
J. Gilbert Kaufman ◽  
Elwin L. Rooy

Aluminum Alloy Castings: Properties, Processes and Applications is a practical guide to the process, structure, property relationships associated with aluminum alloy castings and casting processes. It covers a wide range of casting methods, including variations of sand casting, permanent mold casting, and pressure die casting, showing how key process variables affect the microstructure, properties, and performance of cast aluminum parts. Other chapters provide similar information on the effects of alloying and heat treating and the influence and control of porosity and inclusions. A significant portion of the book contains curated collections of property and performance data, including many previously unpublished aging response curves, growth curves, and fatigue curves; tensile properties at high and low temperatures and at room temperature after high-temperature exposure; the results of creep rupture tests conducted at temperatures from 212 to 600 °F (100 to 315 °C); and stress-strain curves obtained from casting alloys in various tempers under tensile or compressive loads. The book also discusses the factors that contribute to corrosion and fracture resistance and includes test specimen drawings as well as a glossary of terms. For information on the print version, ISBN 978-0-87170-803-8, follow this link.


2002 ◽  
pp. 211-286

Abstract This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It explains how the delta phase, which is used to control grain size in IN-718, improves strength and prevents stress-rupture embrittlement. It describes heat treatments for different product forms, discusses the effect of tramp elements on grain-boundary ductility, and explains how section size and test location influence measured properties. It also provides information and data on the physical and mechanical properties of superalloys, particularly tensile strength, creep-rupture, fatigue, and fracture, and discusses related factors such as directionality, porosity, orientation, elongation, and the effect of coating and welding processes.


1999 ◽  
Vol 121 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Hanchen Huang ◽  
Nasr Ghoniem ◽  
Tomas Diaz de la Rubia ◽  
Moono Rhee ◽  
Hussein Zbib ◽  
...  

The stability of short-range reactions between two dislocations of parallel line vectors which glide on two parallel slip planes in BCC crystals is determined. The two dislocations are assumed to be infinitely long, and their interaction is treated as elastic. The interaction and self-energies are both computed for dynamically moving dislocations, where the dependence on dislocation velocity is taken into account. The stability of the reaction is determined as a function of the following phase space variables: relative angle, relative speed, dislocation mobility, Burgers vector, separation of slip planes, and external force. Our results indicate that the dynamic formation of dislocation dipoles or tilt wall embryos occurs only over a small range of the investigated phase space. Internal effects are shown to be important at close separation, because of the large force between the two dislocations comprising the dipole or tilt wall embryo. We find that destabilization of the dislocation dipoles or tilt wall embryos is enhanced by externally applied stresses or by stress fields of neighboring dislocations.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850184
Author(s):  
Haibo Wang ◽  
Xiaolan Song ◽  
Yue Xu ◽  
Zhenhua Yang

Intercalation mechanism of Li into cubic Co4N4 has been investigated by the first-principles calculations. Lattice constants, ratio of volume expansion, and formation energies of Li[Formula: see text]Co4N4 (x = 0, 1, 2, 3, 4) were calculated. Results indicate that Li prefers to fill the octahedral interstitial site [Formula: see text] rather than the tetrahedral interstitial site [Formula: see text]. With the increase in intercalation Li, the ratio of volume expansion increases from 8.29% (x = 1) to 31.58% (x = 4). Ternary phase Li4Co4N4 has the most stability with the negative intercalation energy, and the corresponding theoretical specific capacity reaches 367 mA/g. Furthermore, the analysis of density of states, valence electron density distribution maps, and electron localization function (ELF) of Co4N4 and Li4Co4N4 indicates that Li intercalation enhances the electrical conductivity of Co4N4 and weakens the bonding of Co and N. Finally, Li-ion migration dynamics in the Co4N4 bulk were investigated with nudged elastic band (NEB) methods. Results show that the migration path of Li-ion is along [Formula: see text] with the energy barrier of 0.44 eV.


Author(s):  
L. P. Lemaire ◽  
D. E. Fornwalt ◽  
F. S. Pettit ◽  
B. H. Kear

Oxidation resistant alloys depend on the formation of a continuous layer of protective oxide scale during the oxidation process. The initial stages of oxidation of multi-component alloys can be quite complex, since numerous metal oxides can be formed. For oxidation resistance, the composition is adjusted so that selective oxidation occurs of that element whose oxide affords the most protection. Ideally, the protective oxide scale should be i) structurally perfect, so as to avoid short-circuit diffusion paths, and ii) strongly adherent to the alloy substrate, which minimizes spalling in response to thermal cycling. Small concentrations (∼ 0.1%) of certain reactive elements, such as yttrium, markedly improve the adherence of oxide scales in many alloy systems.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Sign in / Sign up

Export Citation Format

Share Document