scholarly journals Restoration of Normal NF1 Function with Antisense Morpholino Treatment of Recurrent Pathogenic Patient-Specific Variant c.1466A>G; p.Y489C

2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Elias K. Awad ◽  
Marc Moore ◽  
Hui Liu ◽  
Lukasz Ciszewski ◽  
Laura Lambert ◽  
...  

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.

2019 ◽  
Vol 2 (Supplement_1) ◽  
pp. i33-i39
Author(s):  
Cheng-Jiang Wei ◽  
Shu-Chen Gu ◽  
Jie-Yi Ren ◽  
Yi-Hui Gu ◽  
Xiang-Wen Xu ◽  
...  

Abstract AbstractThe immune system plays an essential role in the development of tumors, which has been demonstrated in multiple types of cancers. Consistent with this, immunotherapies with targets that disrupt these mechanisms and turn the immune system against developing cancers have been proven effective. In neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, the understanding of the complex interactions of the immune system is incomplete despite the discovery of the pivotal role of immune cells in the tumor microenvironment. Individuals with NF1 show a loss of the NF1 gene in nonneoplastic cells, including immune cells, and the aberrant immune system exhibits intriguing interactions with NF1. This review aims to provide an update on recent studies showing the bilateral influences of NF1 mutations on immune cells and how the abnormal immune system promotes the development of NF1 and NF1-related tumors. We then discuss the immune receptors major histocompatibility complex class I and II and the PD-L1 mechanism that shield NF1 from immunosurveillance and enable the immune escape of tumor tissues. Clarification of the latest understanding of the mechanisms underlying the effects of the abnormal immune system on promoting the development of NF1 will indicate potential future directions for further studies and new immunotherapies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3065-3065
Author(s):  
Lijuan Han ◽  
Marcelo A. Szymanski Toledo ◽  
Alexandre Theocharides ◽  
Angela Maurer ◽  
Tim H. Brümmendorf ◽  
...  

Abstract Introduction: Somatic calreticulin (CALR) mutations were discovered in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF) and have been shown to be mutually exclusive with Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations. Recent studies demonstrated that the binding of CALR mutant proteins to MPL induces constitutive activation of the JAK/STAT pathway, thus causing cellular transformation and abnormal megakaryopoiesis. Additionally, it has been reported that patients carrying homozygously mutated CALR ins5 exhibit myeloperoxidase (MPO) deficiency as a result of the absence of CALR chaperone function. However, the impact of CALR mutant homozygosity vs. heterozygosity in CALR del52 mutations as well as on hematopoietic differentiation has not yet been studied. Furthermore, clonal heterogeneity of hematopoietic stem/progenitor cell (HSPC) populations in a patient, together with technical limitations isolating single clones, are major challenges, when determining the impact of CALR mutant zygosity on clonal composition and diversity in MPN. To overcome these limitations, we generated patient-specific iPS cells carrying homozygous or heterozygous CALR mutations or their wild-type counterparts to study their roles in hematopoietic differentiation. Methods: iPS cells were generated by reprogramming peripheral blood-derived mononuclear cells from three patients carrying CALR del52, ins5, or del31 mutations using a CytoTune iPS 2.0 Sendai Reprogramming Kit. Individual colonies were picked and screened for CALR genotypes by PCR. Pluripotency of iPS cells was confirmed by immunofluorescences, and the clones were screened for additional mutations using panel-based next generation sequencing (NGS). Subsequently, CALR iPS cells were subjected to embryonic body formation, mesoderm commitment, and hematopoietic differentiation using our standard in vitro differentiation protocol. CD34+ HSPCs were MACS-sorted and characterized by flow cytometry, cytospins and RNA expression analysis on days 10, 15, and 20 during differentiation. Hematopoietic progenitors, erythrocytes, granulocytes, and megakaryocytes were identified by defined lineage markers. MPO expression was assessed by flow cytometry and cytochemical staining. Results: We established patient-specific iPS cells carrying CALR del52, ins5 or del31 mutation after written informed consent (Table 1). Pluripotency markers OCT4, Tra-1-60 and Tra-1-81 expression were confirmed in all iPS cell clones. In accordance with findings in peripheral blood cells, we detected MPO deficiency in homozygous iPS cell-derived CD15+ cells from CALRins5- and, in addition, also from CALRdel52-mutated patients (pMFI=0.0106 and pMFI=0.0187, resp.). Intriguingly, in vitro hematopoietic differentiation assays revealed additional abnormalities, such as decreased CD66b+ granulocytes derived from homozygous CALR del52 or ins5 iPS cells vs. heterozygous iPS cells on day 10 (pdel52=0.0303 and pins5=0.0253, resp.) and a trend towards increased KIThigh+CD45+ cells. Megakaryopoiesis, defined by CD41+CD42b+ cells, was increased in CALRins5 homozygous vs. heterozygous clones (p=0.0031). However, this bias was not observed in all clones, indicating clone-specific megakaryocytic differentiation potential. No phenotypic differences during hematopoietic differentiation were observed in iPS cell-derived progenitors carrying heterozygous CALRdel31 mutation and its isogenic unmutated CALR controls. Furthermore, our NGS data revealed patient-specific sets of co-occurring mutations in iPS cell clones, which may have contributed to the observed patient-specific phenotypes. As an example, the IDH2 R140Q mutation, reported to block cell differentiation, was found in approximately half of the CALRdel52 iPS clones, and these clones failed to differentiate into the hematopoietic lineage in vitro. Conclusions: We successfully generated patient-specific CALR mutant iPS cells. Upon in vitro differentiation, we detected MPO deficiency and aberrant granulocytic differentiation in CALR homozygous but not heterozygous or wild-type clones. Thus, it is now possible at the single stem cell level to further analyze the molecular mechanisms of CALR-mutant induced MPO deficiency and altered hematopoietic differentiation, in order to better understand disease biology in ET and PMF. Disclosures Brümmendorf: Merck: Consultancy; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Janssen: Consultancy; Takeda: Consultancy.


2009 ◽  
Vol 390 (9) ◽  
Author(s):  
Alexandra Rolletschek ◽  
Anna M. Wobus

Abstract Adult cells have been reprogrammed into induced pluripotent stem (iPS) cells by introducing pluripotency-associated transcription factors. Here, we discuss recent advances and challenges of in vitro reprogramming and future prospects of iPS cells for their use in diagnosis and cell therapy. The generation of patient-specific iPS cells for clinical application requires alternative strategies, because genome-integrating viral vectors may cause insertional mutagenesis. Moreover, when suitable iPS cell lines will be available, efficient and selective differentiation protocols are needed to generate transplantable grafts. Finally, we point to the requirement of a regulatory framework necessary for the commercial use of iPS cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Gustavo Fernandes ◽  
Mirela Souto ◽  
Frederico Costa ◽  
Edite Oliveira ◽  
Bernardo Garicochea

Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1) which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689) flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689) in the interphases analyzed and two signals (RP5-1002G3conRP5-92689) in 93% of cells. These findings show a tandem duplication of 17q11.2.Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4322-4328 ◽  
Author(s):  
Brian V. Balgobind ◽  
Pieter Van Vlierberghe ◽  
Ans M. W. van den Ouweland ◽  
H. Berna Beverloo ◽  
Joan N. R. Terlouw-Kromosoeto ◽  
...  

Abstract Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene. Patients with NF1 have a higher risk to develop juvenile myelomonocytic leukemia (JMML) with a possible progression toward acute myeloid leukemia (AML). In an oligo array comparative genomic hybridization–based screening of 103 patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL) and 71 patients with MLL-rearranged AML, a recurrent cryptic deletion, del(17)(q11.2), was identified in 3 patients with T-ALL and 2 patients with MLL-rearranged AML. This deletion has previously been described as a microdeletion of the NF1 region in patients with NF1. However, our patients lacked clinical NF1 symptoms. Mutation analysis in 4 of these del(17)(q11.2)-positive patients revealed that mutations in the remaining NF1 allele were present in 3 patients, confirming its role as a tumor-suppressor gene in cancer. In addition, NF1 inactivation was confirmed at the RNA expression level in 3 patients tested. Since the NF1 protein is a negative regulator of the RAS pathway (RAS-GTPase activating protein), homozygous NF1 inactivation represent a novel type I mutation in pediatric MLL-rearranged AML and T-ALL with a predicted frequency that is less than 10%. NF1 inactivation may provide an additional proliferative signal toward the development of leukemia.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 967
Author(s):  
Yasmin Roye ◽  
Rohan Bhattacharya ◽  
Xingrui Mou ◽  
Yuhao Zhou ◽  
Morgan A. Burt ◽  
...  

Progress in understanding kidney disease mechanisms and the development of targeted therapeutics have been limited by the lack of functional in vitro models that can closely recapitulate human physiological responses. Organ Chip (or organ-on-a-chip) microfluidic devices provide unique opportunities to overcome some of these challenges given their ability to model the structure and function of tissues and organs in vitro. Previously established organ chip models typically consist of heterogenous cell populations sourced from multiple donors, limiting their applications in patient-specific disease modeling and personalized medicine. In this study, we engineered a personalized glomerulus chip system reconstituted from human induced pluripotent stem (iPS) cell-derived vascular endothelial cells (ECs) and podocytes from a single patient. Our stem cell-derived kidney glomerulus chip successfully mimics the structure and some essential functions of the glomerular filtration barrier. We further modeled glomerular injury in our tissue chips by administering a clinically relevant dose of the chemotherapy drug Adriamycin. The drug disrupts the structural integrity of the endothelium and the podocyte tissue layers, leading to significant albuminuria as observed in patients with glomerulopathies. We anticipate that the personalized glomerulus chip model established in this report could help advance future studies of kidney disease mechanisms and the discovery of personalized therapies. Given the remarkable ability of human iPS cells to differentiate into almost any cell type, this work also provides a blueprint for the establishment of more personalized organ chip and ‘body-on-a-chip’ models in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Wang ◽  
Cheng-Jiang Wei ◽  
Xi-Wei Cui ◽  
Yue-Hua Li ◽  
Yi-Hui Gu ◽  
...  

Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.


Author(s):  
Walter Serra

Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations of the NF1 gene that can lead to the development of benign neurofibroma-like tumours and Malignant Peripheral Nerve Sheath Tumours (MPNST). Pulmonary Arterial Hypertension (PAH) is a rare but severe complication associated with NF1 (PAH-NF). PH-NF1 is classified as group 5 PH, defined as “PH with unclear and/or multifactorial mechanisms”, because the mechanisms of PH remain poorly understood. A better understanding of the genetic and molecular mechanisms underlying the disease may require new ways to develop specific therapies. We present the clinical outcomes of a 51-year old female previously diagnosed with NF1, who presented with progressively worsening dyspnea.


2021 ◽  
Author(s):  
Deeann Wallis ◽  
Andre Leier ◽  
Marc Moore ◽  
Michael Daniel ◽  
Hui Liu ◽  
...  

Abstract We investigated the feasibility of utilizing an exon skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which NF1 exons might be skipped while maintaining neurofibromin function. Human neurofibromin is well-known as a GTPase activating protein (GAP), but outside of its GAP-related domain (GRD), it is unclear how critical other regions are for function. Initial in silico analysis predicted exons that can be skipped with minimal loss of neurofibromin function. Utilizing a novel Nf1 cDNA system, we performed a functional screen to determine the effects of exon skipping on in vitro neurofibromin expression and GRD function. Loss of single exons 12, 17, 25, 41, 47, or 52 maintained significant GRD function in at least two Ras activity assays. Exons 18/19, 20 and 28 are critical for GRD function; deletion of exons 20, 41, or 47 led to significantly lower levels of neurofibromin. As suggested by in silico analysis, skipping of exons 17 or 52 resulted in both the highest neurofibromin levels and the greatest suppression of Ras activity. Assessment of NF1 patient databases indicates that pathogenic variants resulting in deletion or skipping of exons 17, 25, and 52 have not been reported; and truncating pathogenic variants in each exon account for ~0.91, 0.94, and 0.25% of unrelated NF1 cases, respectively. Hence, we designed antisense phosphodiamitate morpholino oligos (PMOs) to skip exon 17 and evaluated them in human cell lines that we generated via CRISPR/Cas9 with a patient-specific truncating pathogenic variant, c.1885G>A. We down-selected oligos that efficiently caused skipping of exon 17 and restored NF1 expression and function. Further, homozygous deletion of exon 17 in a novel mouse model is compatible with viable and grossly healthy animals with normal lifespan and no tumor development, providing proof-of-concept that exon 17 is not essential for murine neurofibromin function. Mild phenotypes observed include abnormal nesting behavior and lymphoid hyperplasia with increased numbers of both B- and T-cells. Hence, exon skipping should be further investigated as a therapeutic approach for NF1 patients with treatment of individuals with pathogenic variants in exon 17.


2021 ◽  
Author(s):  
Jennifer Patritti-Cram ◽  
Jianqiang Wu ◽  
Shinji Kuninaka ◽  
Robert A Coover ◽  
Robert F Hennigan ◽  
...  

Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) lack NF1 and show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. Gene expression profiling and protein expression identified P2RY14 in SCs and SC precursors (SCPs) implicating P2RY14 as a candidate upstream regulator of cAMP in EGF-dependent SCP. We found that SCP self-renewal was reduced by genetic or pharmacological inhibition of P2RY14. In NF1 deficient SCs and malignant peripheral nerve sheath tumor (MPNST) cells, P2RY14 inhibition decreased EGFR-driven phospho-Akt and increased cAMP signaling. In a neurofibroma mouse model, genetic deletion of P2RY14 increased mouse survival, delayed neurofibroma initiation and rescued cAMP signaling. Conversely, elevation of cAMP diminished SCP number in vitro and diminished SC proliferation in neurofibroma bearing mice in vivo. These studies identify the purinergic receptor P2RY14 as a critical G-protein-coupled receptor (GPCR) in NF1 mutant SCPs and SCs and suggest roles for EGFR-GPCR crosstalk in facilitating SCP self-renewal and neurofibroma initiation via cAMP and EGFR-driven phospho-Akt.


Sign in / Sign up

Export Citation Format

Share Document