scholarly journals New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures

2021 ◽  
Vol 13 (16) ◽  
pp. 9315
Author(s):  
Yuantian Sun ◽  
Guichen Li ◽  
Junfei Zhang ◽  
Junbo Sun ◽  
Jiandong Huang ◽  
...  

Pre-grouting as an effective means for improving the stability of roadways can reduce maintenance costs and maintain safety in complex mining conditions. In the Guobei coal mine in China, a cement pre-grouting technique was adopted to enhance the overall strength of soft coal mass and provide sufficient support for the roadway. However, there are very limited studies about the effect of grouting on the overall strength of coal in the laboratory. In this paper, based on the field observation of a coal-grout structure after grouting, a series of direct shear tests were conducted on coal and grouted coal specimens to quantitatively evaluate the quality improvement of grouted coal mass. The results showed that the peak and residual shear strength, cohesion, friction angle and the shear stiffness of grouted coal were significantly improved with the increase of the diameter of grout column. Linear regression models were established for predicting these mechanical parameters. In addition, three failure models associated with coal and grouted coal specimens were revealed. According to microstructure and macroscopic failure performance of specimens, the application of the proposed models and some methods for further improving the stability of grouted coal mass were suggested. The research can provide the basic evaluation and guideline for the parametric design of cement pre-grouting applications in soft coal mass.

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Guichen Li ◽  
Yuantian Sun ◽  
Junfei Zhang ◽  
Qianjin Zhang ◽  
Changlun Sun ◽  
...  

Improving roadway stability in deep underground mines is quite challenging, as the conventional support structures easily fail. Roadway collapse and large deformation occur just several months after tunnel excavation. In this study, a relatively new prereinforcement technique, the jet grouting (JG), is introduced to improve roadway stability. A field test was performed for evaluating the practicability and applicability of JG in soft coal mass. A series of laboratory tests were conducted to assess the properties of coalcrete (coal-grout after JG treatment). A two-dimensional numerical model was established for validating the input parameters. Based on the verified model, three JG support cases for roadway were modeled and compared with a conventional support case, namely, the currently used support in this mine “rock bolts + U-shaped steel set + shotcrete.” The results show that the proposed prereinforced JG support structures can considerably control the deformation and failure zone of the roadway and improve the bearing capacity of coal mass. The mechanism of maintaining roadway stability using JG techniques is further revealed. Some suggestions are further presented to improve the stability of the jet-grouted roadway.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1976
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski

Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for the correct description of the equivalent plate performance. In this work, the method proposed by Biancolini is extended to include the possibility of determining, apart from the tensile and flexural stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method is based on the strain energy equivalence between the full numerical 3D model of the corrugated board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this study to accurately reflect the geometry of the corrugated board. In the method presented here, the finite element method is only used to compose the initial global stiffness matrix, which is then condensed and directly used in the homogenization procedure. The stability of the proposed method was tested for different variants of the selected representative volume elements. The obtained results are consistent with other technique already presented in the literature.


Author(s):  
Bin Cui ◽  
Shao Ying Li ◽  
Linda Dong-Ling Wang ◽  
Xiang Chen ◽  
Jun Ke ◽  
...  

Inadequate hand washing among chefs is a major contributor to outbreaks of foodborne illnesses originating in restaurants. Although many studies have evaluated hand hygiene knowledge (HHK) and self-reported hand washing behaviors (HWBs) in restaurant workers in different countries, little is known about HHK and HWBs in restaurant kitchen chefs, particularly in China. In this study, we interviewed 453 restaurant kitchen chefs in Jiangsu Province in China regarding their HHK and HWBs and used Chi-square tests (Fisher exact tests), pairwise comparisons, and linear regression models to analyze the responses and identify determinants of HHK and HWBs. Results reveal that less frequent hand washing after leaving work temporarily and after touching used cutlery were the main issues among restaurant kitchen chefs in Jiangsu Province. Kitchen hands had lower levels of HHK and engaged less frequently in good HWBs than the other type of chefs. Furthermore, working in a large restaurant and having worked in the restaurant industry for a longer amount of time were correlated with better HHK and HWBs. These findings suggest that close attention should be paid to the HWBs of chefs during food preparation, that kitchen hands are the key group of restaurant kitchen workers who need training in HHK, and that regulatory activities should focus on small-scale restaurants.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joon-Sang An ◽  
Kyung-Nam Kang ◽  
Ju-Young Choi ◽  
Won-Suh Sung ◽  
Vathna Suy ◽  
...  

The stability of tunnels has mainly been evaluated based on displacement. Because displacement due to the excavation process is significant, back analysis of the structure and ground can be performed easily. Recently, the length of a segment-lined tunnel driven by the mechanized tunneling method is increasing. Because the internal displacement of a segment-lined tunnel is trivial, it is difficult to analyze the stability of segment-lined tunnels using the conventional method. This paper proposes a back analysis method using stress and displacement information for a segment-lined tunnel. A differential evolution algorithm was adopted for tunnel back analysis. Back analysis based on the differential evolution algorithm using stress and displacement was established and performed using the finite difference code, FLAC3D, and built-in FISH language. Detailed flowcharts of back analysis based on DEA using both monitored displacement stresses were also suggested. As a preliminary study, the target variables of the back analysis adopted in this study were the elastic modulus, cohesion, and friction angle of the ground. The back analysis based on the monitored displacement is useful when the displacement is significant due to excavation. However, the conventional displacement-based back analysis is unsuitable for a segment-lined tunnel after construction because of its trivial internal displacement since the average error is greater than 32% and the evolutionary calculation is finalized due to the maximum iteration criteria. The average error obtained from the proposed back analysis algorithm using both stress and displacement ranged within approximately 6–8%. This also confirms that the proposed back analysis algorithm is suitable for a segment-lined tunnel.


Author(s):  
Robert Dell ◽  
Runar Unnthorsson ◽  
C. S. Wei ◽  
William Foley

In small source power generation scenarios in industrial or remote settings a viable small electrical supply for security and monitoring systems is often problematic due to the variability of the energy sources and the stability of the power generated. These small scale systems lack the advantages of a larger power grid. Therefore peak power requirements can be beyond the power generator necessitating energy storage such as batteries. The authors have developed and documented a reliable thermoelectric generator and a test bed. The generator was combined with a battery in order to meet peak power requirements beyond the unassisted range of the generator. This paper presents a test case result with the thermoelectric generator powering a complete web accessible mobile robot system. The robot system can be used for monitoring, physical manipulation of the environment, routine maintenance and in emergencies.


Author(s):  
X. C. Nguyen ◽  
Komla Miheaye ◽  
Mun-gyu Kim ◽  
Howard Newman ◽  
Dong-hoon Yoo ◽  
...  

This study describes a FLNG specifically designed to monetize Associated Gas (AG) of producing oil fields located within convenient distance of an existing LNG Plant or Port with LNG storage facility. Limited production capacity combined with short range small capacity shuttles and limited LNG storage capacity, provide a cost effective means for LNG production. This FLNG is designed to service an existing industry and does not require development of stranded gas discoveries.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4142 ◽  
Author(s):  
Kun Yang ◽  
Shu Li ◽  
Xiaoshuai Liu ◽  
Weixiong Gan ◽  
Longjun Deng ◽  
...  

Schizothorax wangchiachii is a key fish species in the stock enhancement program of the Yalong River hydropower project, China. Alizarin red S (ARS) was used to mark large numbers of juvenile S. wangchiachii in the Jinping Hatchery and later used to evaluate stock enhancement in the Jinping area of the Yalong River. In a small-scale pilot study, 7,000 juveniles of the 2014 cohort were successfully marked by immersion in ARS solution, and no mortality was recorded during the marking process. The ARS mark in the fish otoliths remained visible 20 months later. In the large-scale marking study, approximately 600,000 juveniles of the 2015 cohort were successfully marked. Mortalities of both marked and unmarked juveniles were very low and did not differ significantly. Total length, wet mass and condition factor did not differ significantly between unmarked and marked individuals after three months. On 24 July 2015, about 840,000 Jinping Hatchery-produced young S. wangchiachii, including 400,000 marked individuals, were released at two sites in the Jinping area. Recapture surveys showed that (1) marked and unmarked S. wangchiachii did not differ significantly in total length, wet mass and condition factor; (2) stocked individuals became an important part of recruitment of the 2015 cohort; (3) instantaneous growth rate of marked individuals tended to slightly increase; and (4) most stocked individuals were distributed along a 10–15 km stretch near the release sites. These results suggest that the ARS method is a cost-efficient way to mass mark juvenile S. wangchiachii and that releasing juveniles is an effective means of stock recruitment.


Friction ◽  
2022 ◽  
Author(s):  
Jiawei Cao ◽  
Qunyang Li

AbstractMechanical vibration, as an alternative of application of solid/liquid lubricants, has been an effective means to modulate friction at the macroscale. Recently, atomic force microscopy (AFM) experiments and model simulations also suggest a similar vibration-induced friction reduction effect for nanoscale contact interfaces, although an additional external vibration source is typically needed to excite the system. Here, by introducing a piezoelectric thin film along the contact interface, we demonstrate that friction measured by a conductive AFM probe can be significantly reduced (more than 70%) when an alternating current (AC) voltage is applied. Such real-time friction modulation is achieved owing to the localized nanoscale vibration originating from the intrinsic inverse piezoelectric effect, and is applicable for various material combinations. Assisted by analysis with the Prandtl—Tomlinson (P—T) friction model, our experimental results suggest that there exists an approximately linear correlation between the vibrational amplitude and the relative factor for perturbation of sliding energy corrugation. This work offers a viable strategy for realizing active friction modulation for small-scale interfaces without the need of additional vibration source or global excitation that may adversely impact device functionalities.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ziwen Wang ◽  
Jifang Du ◽  
Shuaifeng Wu ◽  
Yingqi Wei ◽  
Jianzhang Xiao ◽  
...  

To identify the water softening mechanisms that caused landslides in Panzhihua Airport, China, property and saturation tests of the mudstones extracted from a representative landslide were proposed. In this paper, water saturation tests were carried out on samples of carbonaceous mudstone collected from the east side of the No. 12 landslide at the airport. A number of different analytical techniques and mechanical tests were used to determine changes in chemical composition, mineral assemblages, and mudstone structural characteristics, including shear strength, after the mudstone had been softened. Three kinds of changes caused by water and three mudstone softening stages are proposed. The results show that the water has a significant influence on the properties of the mudstone, so the stability of the mudstone in the watery period is a big threat to the upper structure. A model for water immersion mudstone strength softening is developed. The model incorporates a permeability coefficient, the hydraulic gradient, and time; the model can be used to determine the mudstone’s shear strength and internal friction angle. This study provides a reference for the study of rock softened by water immersion.


Author(s):  
Mun-sung Kim ◽  
Eric Morilhat ◽  
X. C. Nguyen ◽  
Bo-hee Kim ◽  
Jung-moon Jang ◽  
...  

This study describes one of the technical solutions for Small Scale FLNG (SSFLNG)[1] development specifically designed to monetize Associated Gas (AG) of producing oil fields located within convenient distance of an existing LNG Plant or Port with LNG storage facility. Limited production capacity combined with short range small scale LNG carriers (SSLNGC), provide a cost effective means for LNG production. Ship to ship off-loading operation by loading arm has been considered in AG SSFLNG. Produced LNG is to be off-loaded from the SSFLNG to side-by-side moored SSLNGC. Relative motion and dynamic load acting on loading arm system in side-by-side mooring arrangement is one of key factors to estimate the offloading operability of the AG SSFLNG. In this paper, a numerical two-body motion analysis for the side-by-side moored SSFLNG in frequency- and time-domain is carried out. Also, the basic engineering work is carried out for the marine loading arms (MLA). Since the MLA reacts approximately as a linear system, it is calculated by a full spectral RAO analysis for each of the worst load cases issued from the spectral ranking. All loads and stresses inside the MLA are verified in accordance with EN1474-1[2] for the situations identified in the previous step. A high level fatigue analysis focused on the cryogenic swivel joints is carried out. Based on the numerical calculation for relative motion in side-by-side moored FLNG, we have been performed structural assessment for MLA in several environment conditions. The structural integrity of both MLA and the LNGC manifold are validated during offloading for Offshore West Africa.


Sign in / Sign up

Export Citation Format

Share Document