scholarly journals Metal-containing taurine compounds protect rat’s brain in reperfusion-induced injury

2020 ◽  
Vol 6 (4) ◽  
pp. 43-49
Author(s):  
Elena V. Semeleva ◽  
Ekaterina V. Blinova ◽  
Andrey V. Zaborovsky ◽  
Irina A. Gromova ◽  
Asliddin S. Shukurov ◽  
...  

Introduction: The study aim was to explore a neuroprotective action of magnesium (LKhT-317) and zinc (LKhT-318) taurine salts on experimental models of reperfusion brain damage in rats and cell culture. Materials and methods: The study was performed on male Sprague Dawley rats, and rat’s hippocampal mixed neuroglial cell culture. Magnesium- (LKhT-317) and zinc-containing (LKhT-318) derivatives of taurine were studied. Reperfusion brain damage was induced 30 min after intraluminal cerebral middle artery occlusion. Severity of the injury was assessed by local blood flowmetry, neurological symptoms scaling and brain tissue staining. Levels of IL-1b, IL-10 and TNF-alpha in tissue were determined by qualitative ELISA. Caspase-3 and Bcl-2 expressions were detected by IHC. Neurons survival was assessed by cytochemistry. Cellular calcium responses were detected by fluorescent microscopy of Fura-2-containig cells. Results and discussion: Metal-containing taurine derivatives – LKhT-317 and LKhT-318 – demonstrated a sufficient neuroprotective property in rats with a reperfusion-induced brain injury. Both derivatives effectively prevented severity of the animals’ brain damage, motor deficiency, reduction of microvascular perfusion, and proinflammatory cytokines production. Magnesium-containing compound LKhT-317 was comparatively more effective than zinc-containing one. LKhT-317 possessed an anti-apoptotic action in vivo, and protected neurons from OGD-mediated cell death in mixed hippocampal culture. The aforementioned actions may be associated with an LKhT-317 inhibitory effect on NMDA-induced cellular Ca2+ response and, therefore, the anti-excitotoxic property of the compound. Conclusion: Magnesium- and zinc-containing taurine derivatives may be considered as promising neuroprotectors in the reperfusion-induced brain injury.

2004 ◽  
Vol 24 (6) ◽  
pp. 668-676 ◽  
Author(s):  
Hiroharu Kataoka ◽  
Seong-Woong Kim ◽  
Nikolaus Plesnila

The contribution of leukocyte infiltration to brain damage after permanent focal cerebral ischemia and the underlying molecular mechanisms are still unclear. Therefore, the aim of this study was to establish a mouse model for the visualization of leukocytes in the cerebral microcirculation in vivo and to investigate leukocyte-endothelial interaction (LEI) after permanent middle cerebral artery occlusion (MCAO). Sham-operated 129/Sv mice showed physiologic LEI in pial venules as observed by intravital fluorescent microscopy. Permanent focal cerebral ischemia induced a significant increase of LEI predominantly in pial venules. The number of rolling and adherent leukocytes reached 36.5 ± 13.2/100 μm × min and 22.5 ± 7.9/100 μm × min, respectively at 120 minutes after MCAO ( P = 0.016 vs. control). Of note, rolling and adherent leukocytes were also observed in arterioles of ischemic animals (7.3 ± 3.0/100 μm × min rolling and 3.0 ± 3.6/100 μm × min adherent). Capillary density was not different between groups. These results demonstrate that leukocytes accumulate in the brain not only after transient but also after permanent focal cerebral ischemia and may therefore contribute to brain damage after stroke without reperfusion.


2018 ◽  
Vol 115 (3) ◽  
pp. 637-646 ◽  
Author(s):  
Mohamad El Amki ◽  
Nadine Binder ◽  
Riccardo Steffen ◽  
Hannah Schneider ◽  
Andreas R Luft ◽  
...  

AbstractAimsEffective stroke treatments beyond reperfusion remain scant. The natural steroid hormone progesterone has shown protective effects in experimental models of brain injury and cardiovascular disease. However, unfavourable bioavailability limits its clinical use. Desogestrel and drospirenone are new generation progestins with progesterone-like properties, developed as oral contraceptives with excellent bioavailability and safety profile. We investigated the neuroprotective properties of these progestins in vivo using transient middle cerebral artery occlusion (MCAO) and in vitro using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in primary neuronal cells.Methods and resultsMCAO was induced in female, female ovariectomized (modelling postmenopausal females) and male mice. Treatment with the progestins resulted in less severe strokes after MCAO and less neuronal death in OGD/R. Desogestrel and drospirenone induced higher expression levels of GABAAR α4 and delta subunits within the brain, suggesting changes in GABAAR configuration favouring tonic inhibition as potential mechanism of action. Treatment with the GABAAR blocker picrotoxin abolished the protection afforded by the progestins in vivo and in vitro.ConclusionFor the first time, here, we delineate a potential role of desogestrel and drospirenone, both clinically approved and safe drugs in mitigating the consequences of stroke. Contraception with desogestrel and drospirenone in progestin-only preparations may be particularly beneficial for women at risk of stroke.


2004 ◽  
Vol 287 (3) ◽  
pp. F404-F410 ◽  
Author(s):  
Nicolas Lerolle ◽  
Soline Bourgeois ◽  
Françoise Leviel ◽  
Gaëtan Lebrun ◽  
Michel Paillard ◽  
...  

NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT1) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption ( JCl) as well as transepithelial voltage ( Vte) were measured. Luminal or peritubular 10−11 and 10−10 M angiotensin II had no effect on JCl or Vte. However, 10−8 M luminal or peritubular angiotensin II reversibly decreased both JCl and Vte. The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10−6 M). By contrast, PD-23319, an AT2-receptor antagonist, did not alter the inhibitory effect of 10−8 M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT1 receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 180 ◽  
Author(s):  
Aroha B. Sánchez ◽  
Beatriz Clares ◽  
María J. Rodríguez-Lagunas ◽  
María J. Fábrega ◽  
Ana C. Calpena

Safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) has been widely studied and both therapeutic and side effects at the gastric and cardiovascular level have been generally associated with the inhibitory effect of isoform 1 (COX-1) and 2 (COX-2) cyclooxygenase enzymes. Now there are evidences of the involvement of multiple cellular pathways in the NSAIDs-mediated-gastrointestinal (GI) damage related to enterocyte redox state. In a previous review we summarized the key role of melatonin (MLT), as an antioxidant, in the inhibition of inflammation pathways mediated by oxidative stress in several diseases, which makes us wonder if MLT could minimize GI NSAIDs side effects. So, the aim of this work is to study the effect of MLT as preventive agent of GI injury caused by NSAIDs. With this objective sodium diclofenac (SD) was administered alone and together with MLT in two experimental models, ex vivo studies in pig intestine, using Franz cells, and in vivo studies in mice where stomach and intestine were studied. The histological evaluation of pig intestine samples showed that SD induced the villi alteration, which was prevented by MLT. In vivo experiments showed that SD altered the mice stomach mucosa and induced tissue damage that was prevented by MLT. The evaluation by quantitative reverse transcription PCR (RT-qPCR) of two biochemical markers, COX-2 and iNOS, showed an increase of both molecules in less injured tissues, suggesting that MLT promotes tissue healing by improving redox state and by increasing iNOS/NO that under non-oxidative condition is responsible for the maintenance of GI-epithelium integrity, increasing blood flow and promoting angiogenesis and that in presence of MLT, COX-2 may be responsible for wound healing in enterocyte. Therefore, we found that MLT may be a preventive agent of GI damages induced by NSAIDs.


Author(s):  
Peng Wang ◽  
Xiao-Xia Hu ◽  
Ying-hui Li ◽  
Nan-Yong Gao ◽  
Guo-quan Chen ◽  
...  

This study was to evaluate the effect of resveratrol on the pharmacokinetics of ticagrelor in rats and the metabolism of ticagrelor in human CYP3A4 and liver microsomes. Eighteen Sprague-Dawley rats were randomly divided into three groups: group A (control group), group B (50mg/kg resveratrol), and group C (150mg/kg resveratrol ). After 30 minutes administration of resveratrol, a single dose of ticagrelor (18mg/kg) was administered orally. The vitro experiment was performed to examine the influence of resveratrol on ticagrelor metabolism in CYP3A4*1, human, and rat liver microsomes. Serial biological samples were assayed by validated UHPLC-MS/MS methods. In vivo study, the AUC and Cmax of ticagrelor in group B and C appeared to be significantly higher than the control group, while Vz/F and CLz/F of ticagrelor in group B and C were significantly decreased. In vitro study, resveratrol exhibited an inhibitory effect on CYP3A4*1, human and rat liver microsomes. The IC50 values of resveratrol were 56.75μM,69.07μM and 14.22μM, respectively. Our results indicated that resveratrol had a inhibitory effect on the metabolism of ticagrelor in vitro and vivo. It should be paid more attention to the clinical combination of resveratrol with ticagrelor and ticagrelor plasma concentration should be monitored to avoid the occurrence of adverse reaction.


2000 ◽  
Vol 25 (2) ◽  
pp. 207-219 ◽  
Author(s):  
AH Taylor ◽  
AE Fox-Robichaud ◽  
C Egan ◽  
J Dionne ◽  
DE Lawless ◽  
...  

Oestrogens protect against ischaemic heart disease in the post-menopausal female by increasing serum concentrations of apolipoprotein (apo) AI and the abundance of high-density lipoprotein particles. In men and experimental male animals, the administration of oestrogen has variable effects on apo AI expression. As the major mode of oestrogen action on target genes involves regulating promoter activity and hence transcription, oestrogen is expected to alter transcription of the apo AI gene. To test this hypothesis, the effect of 17beta-oestradiol (E(2)), on rat apo AI promoter activity in male hepatoma HuH-7 cells, was tested by co-transfecting a reporter template, pAI.474.CAT containing-474 to-7 of the rat apo AI promoter and an oestrogen receptor (ER) expression vector, pCMV-ER. Transfected cells exposed to E(2) showed a dose-dependent decrease in chloramphenicol acetyltransferase (CAT)-activity, with a maximum 91+/-1.5% reduction at 1 microM E(2). Deletional analysis of the promoter localized the inhibitory effect of ER and E(2) to site B (-170 to-144) with an adjacent 5' contiguous motif, site S (-186 to-171) acting as an amplifier. HuH-7 cell nuclear extracts showed binding activities with both sites S and B, but recombinant human ER did not. Furthermore, nuclear extracts from E(2)-treated HuH-7 cells showed weaker binding activity to site B, but not to site S. In summary, the inhibitory effect of ER and E(2) on rat apo AI gene activity is mediated by a promoter element, site B. This inhibitory effect arises from a mechanism that does not involve direct ER binding to the B-element. The conclusion that E(2) inhibits apo AI transcription was confirmed in vivo. Treatment of male adult Sprague-Dawley rats with up to 200 microg E(2) for 7 days decreased apo AI protein and hepatic mRNA by 72+/-21% and 68+/-1.4% respectively. Results of 'run-on' transcription of the apo AI gene in isolated hepatic nuclei showed a 55% decrease in hormone-treated male rats. These findings suggest that E(2) exerts primarily an inhibitory effect within male hepatic nuclei.


2020 ◽  
Author(s):  
Ye Li ◽  
Xinxin Wang ◽  
Xiaoyu Cao ◽  
Na Li ◽  
Sun Meng ◽  
...  

Abstract Background: Traumatic brain injury (TBI) causes structural damage and impairs motor and cognitive function of the brain. Our previous study suggested that exosomes (EXs) secreted by stem cells from human exfoliated deciduous teeth (SHED) extenuated motor damage in TBI rats by regulating microglia. The molecular mechanism of SHED-EXs was investigated in the present study. Methods: The miRNA array was performed to determine the differential miRNA expression in SHED-EXs treating microglia. The key miRNA was selected. Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA) and Griess assay were performed to detect the function of key miRNA. Real-time PCR, Western blotting and dual luciferase reporter assay were used to confirm the relationship between key miRNA and the target gene. Chromatin immunoprecipitation (ChIP) was performed to determine the downstream pathway of EXs-miRNA. Traumatic brain injury rat model was established and local injection of EXs-miRNA was performed to evaluate the effect.Results: SHED-EXs delivery of miR-330-5p was the key in the regulation of microglia polarization by inhibiting M1 polarization and promoting M2 polarization. Mechanistically, miR-330-5p had an inhibitory effect on Ehmt2, and miR-330-5p/Ehmt2 promoted the transcription of CXCL14 through H3K9me2. In vivo data showed that SHED-EXs/miR-330-5p reduced neuro-inflammation and repaired neurological function of TBI rats. Conclusions: SHED-EXs/miR-330-5p improved the motor function of rats after TBI by inhibiting M1 polarization and promoting M2 polarization of microglia through Ehmt2/H3K9me2/CXCL14 pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shalil Khanal ◽  
Shanta R. Bhattarai ◽  
Jagannathan Sankar ◽  
Ramji K. Bhandari ◽  
Jeffrey M. Macdonald ◽  
...  

Abstract Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.


2017 ◽  
Vol 131 (20) ◽  
pp. 2525-2532 ◽  
Author(s):  
Zsanett Bahor ◽  
Jing Liao ◽  
Malcolm R. Macleod ◽  
Alexandra Bannach-Brown ◽  
Sarah K. McCann ◽  
...  

Background: Findings from in vivo research may be less reliable where studies do not report measures to reduce risks of bias. The experimental stroke community has been at the forefront of implementing changes to improve reporting, but it is not known whether these efforts are associated with continuous improvements. Our aims here were firstly to validate an automated tool to assess risks of bias in published works, and secondly to assess the reporting of measures taken to reduce the risk of bias within recent literature for two experimental models of stroke. Methods: We developed and used text analytic approaches to automatically ascertain reporting of measures to reduce risk of bias from full-text articles describing animal experiments inducing middle cerebral artery occlusion (MCAO) or modelling lacunar stroke. Results: Compared with previous assessments, there were improvements in the reporting of measures taken to reduce risks of bias in the MCAO literature but not in the lacunar stroke literature. Accuracy of automated annotation of risk of bias in the MCAO literature was 86% (randomization), 94% (blinding) and 100% (sample size calculation); and in the lacunar stroke literature accuracy was 67% (randomization), 91% (blinding) and 96% (sample size calculation). Discussion: There remains substantial opportunity for improvement in the reporting of animal research modelling stroke, particularly in the lacunar stroke literature. Further, automated tools perform sufficiently well to identify whether studies report blinded assessment of outcome, but improvements are required in the tools to ascertain whether randomization and a sample size calculation were reported.


Sign in / Sign up

Export Citation Format

Share Document