scholarly journals Evaluation of Mechanical Properties of Sisal and Bamboo Fibres Reinforced with Polymer Matrix Composites Prepared by Compression Moulding Process

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Krishna Mohan ◽  
Arul Thayammal Ganesan ◽  
M. Ramarao ◽  
Amol L. Mangrulkar ◽  
S. Rajesh ◽  
...  

Today’s modern, dynamic world would be impossible to imagine without the concept of composite material advancement. Various studies are being conducted in this area in order to reach the desired level. In terms of compatibility, natural fibre reinforced polymer-based composites and synthetic fibre composites are very similar. Because they are lightweight, nontoxic, and nonabrasive, they are very popular with consumers. They are also readily available and affordable. Composite materials made from natural fibre have superior mechanical properties compared to those made from synthetic fibre. As part of this research, an epoxy-based composite with bamboo and sisal fibre reinforcement is examined. Reinforced with epoxy resin, bamboo fibre and sisal fibre are used to make composite materials. The effect of adding bamboo fibre and sisal fibre in various weight percentages on the mechanical behaviour of composites is investigated.

2018 ◽  
Vol 144 ◽  
pp. 02011
Author(s):  
Vithal Rao Chavan ◽  
K. R. Dinesh ◽  
K. Veeresh ◽  
Veerabhadrappa Algur ◽  
Manjunath Shettar

Composite materials for the most part depicted as the mixes of two or more materials that outcome in the unmistakable properties than that of guard materials. Fibre strengthened plastics have been all around utilized for get-together flying machine and transport key parts as a delayed consequence of their specific mechanical and physical properties, for example, high particular quality and high particular robustness. Another pertinent application for fibre maintained polymeric composites (particularly glass fibre strengthened plastics) is in the electronic business, in which they are utilized for passing on printed wiring sheets. The utilization of polymer composite materials is winding up being powerfully essential. The present work delineates the change and mechanical portrayal of new polymer composites including glass fibre fortress, epoxy and maple cellulose fibre. The starting late made composites are delineated for their mechanical properties. The composite spreads were set up by utilizing hand layup framework. The experiments were conducted on and studied the effect of post curing on hybrid composites. The result reveals that the samples only with natural fibre have more promising results compared with synthetic fibre. The synthetic fibres get wrinkled due to post curing were as no such visuals in the natural fibres.


2017 ◽  
Vol 11 (1) ◽  
pp. 350-362 ◽  
Author(s):  
Rodríguez-Liñán Carmen ◽  
Morales-Conde María J. ◽  
Rubio-De-Hita P. ◽  
Pérez-Gálvez F. ◽  
Pedreño-Rojas Manuel A.

Objective: This paper studies the influence of natural and synthetic fibres on the mechanical behaviour of recycled wood-gypsum composites. These composites of wood waste, such as wood shavings and sawdust, were tested using different proportions of each type of recycled wood. The fibres used, straw as a natural fibre and glass fibre as a synthetic fibre, were analysed in two different proportions. Method: The experimental procedure was based on the analysis of the physical properties, density and mechanical properties, flexural strength and compression of the reinforced mixtures. Water absorption by capillarity and the thermal behaviour of the new wood-gypsum materials were also studied. Results and Conclusion: The results show that the use of both types of fibres in the mixtures produces lighter composites, and reinforcement by glass fibre represents a significant increase in their flexural strength.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2020 ◽  
pp. 109963622093147
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Noordiana Mohd Ishak ◽  
Kathiravan Subramaniam

Fibre metal laminates (FMLs) are the contemporary sandwich materials that have been employed in the aerospace industries. The commercially available synthetic fibre based FMLs have shown excellent fatigue, impact and specific properties over those of metallic alloys. In order to explore the potential of environmental friendly cellulosic based materials, this research work aims to characterise the mechanical properties of novel woven pineapple leaf fibre reinforced metal laminates which were prepared through the hot compression moulding technique. For the comparison purpose, the mechanical properties of woven pineapple leaf fabrics and pineapple leaf fibre reinforced composite laminates were determined as well. It was concluded that the pineapple leaf fibre reinforced metal laminates evidenced salient mechanical and specific properties over pineapple leaf fabrics and composites. The specific tensile strength of metal laminates was 230.87% and 62.21% higher than those of the pineapple leaf fabrics and composite laminates whereas the specific flexural strength of metal laminates was 174.91% higher than composite laminates. Besides that, metal laminates also showed an impact strength of 91.49 kJ/m2 which was 143.13% greater than that of the composite laminates. The results indeed showed that the pineapple based FMLs could be considered as the promising and sustainable sandwich materials in future structural applications.


2014 ◽  
Vol 591 ◽  
pp. 7-10 ◽  
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran

Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.


Author(s):  
E. H. Agung ◽  
M. H. M. Hamdan ◽  
Januar Parlaungan Siregar ◽  
D. Bachtiar ◽  
C. Tezara ◽  
...  

Fast-growing scientific work is focusing on alternative sources to replace modern synthetic fibre materials due to the adverse effects caused by petroleum-based materials. Natural fibre possesses high potential as a replacement for synthetic fibre and petroleum-based products. These materials are not only greener and environmental-friendly, but also safe for human health. As such, this study investigated the influence of compatibilising agent of maleated anhydride polyethylene (MAPE) on mechanical performance of pineapple leaf fibre (PALF) reinforced polylactic acid (PLA). The raw materials, such as PALF, PLA, and MAPE, were mixed by using a hot roller mixer machine and hot compression moulding at 190ºC. The specimens were then tested for water absorption and flexibility. The specimens were submerged in water for 0, 7, 14, and 21 days. Three types of tests were conducted, namely water absorption, tensile, and flexural assessments. The results of water absorption, tensile, and flexural tests for the untreated PALF composite (UPALF) and treated PLAF composite (TPALF) were recorded and explained. As a conclusion, composite materials based on hydrophilic natural fibre may reduce the tensile and flexural properties of the composite.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Raphael Olabanji Ogunleye ◽  
Sona Rusnakova

This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.


Author(s):  
Hoo Tien Nicholas Kuan ◽  
Meng Chuen Lee

Pandanus atrocarpus, or locally known as mengkuang plant is likely to be potential natural fibre reinforcement in composite. Both the Pandanus leaves, and fibres extracted from the Pandanus leaves were used in composite fabrication. Fibres were extracted from Pandanus leaves with water retting process. Pandanus composites were laminated using compression moulding method. The tensile properties of composite laminates based on lamination of Pandanus leaf- and extracted Pandanus fibre-reinforced polyethylene were investigated. Tensile tests have shown that composite laminates based on extracted Pandanus fibre reinforced polyethylene were more superior than using the Pandanus leaf itself without extracting its fibre. Tests exhibited that increasing the volume fraction of Pandanus fibre resulted in strength increase. This suggests that Pandanus fibre- based composites could offer a range of mechanical properties for use in the engineering industry.


Sign in / Sign up

Export Citation Format

Share Document