Shock-induced plasticity and phase transformation in single crystal magnesium: An interatomic potential and non-equilibrium molecular dynamics simulations

Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang Xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract An effective and reliable Finnis-Sinclair (FS) type potential is developed for large-scale molecular dynamics (MD) simulations of plasticity and phase transition of Magnesium (Mg) single crystals under high-pressure shock loading. The shock-wave profiles exhibit a split elastic-inelastic wave in the [0001]HCP shock orientation and a three-wave structure in the [10-10]HCP and [-12-10]HCP directions, namely, an elastic precursor following the plastic and phase-transition fronts. The shock Hugoniot of the particle velocity (Up) vs. the shock velocity (Us) of Mg single crystals in three shock directions under low shock strength reveals apparent anisotropy, which vanishes with increasing shock strength. For the [0001]HCP shock direction, the amorphization caused by strong atomic strain plays an important role in the phase transition and allows for the phase transition from an isotropic stressed state to the daughter phase. The reorientation in the shock directions [10-10]HCP and [-12-10]HCP, as the primary plasticity deformation, leads to the compressed hexagonal close-packed (HCP) phase and reduces the phase-transition threshold pressure. The phase-transition pathway in the shock direction [0001]HCP includes a preferential contraction strain along the [0001]HCP direction, a tension along [-12-10]HCP direction, an effective contraction and shear along the [10-10]HCP direction. For the [10-10]HCP and [-12-10]HCP shock directions, the phase-transition pathway consists of two steps: a reorientation and the subsequent transition from the reorientation hexagonal close-packed phase (RHCP) to the body-centered cubic (BCC). The orientation relationships between HCP and BCC are (0001)HCP á-12-10ñHCP // {110}BCC á001ñBCC. Due to different slipping directions during the phase transition, three variants of the product phase are observed in the shocked samples, accompanied by three kinds of typical coherent twin-grain boundaries between the variants. The results indicate that the highly concentrated shear stress leads to the crystal lattice instability in the elastic precursor, and the plasticity or the phase transition relaxed the shear stress.

Author(s):  
Carlos J. Gomes ◽  
Marcela Madrid ◽  
Cristina H. Amon

We have implemented a parallel molecular dynamics algorithm, which incorporates the Stillinger-Weber interatomic potential. The code was parallelized using a ghost cell atomic division approach, ensuring scaling with the number of processors and a significant increase in speed with respect to the serial version. The methodology is validated by computing the thermal conductivity and phonon frequency spectra of bulk silicon single crystals for different domain sizes at 1000K. The predicted thermal conductivities are consistent with the experimental value at that temperature. In addition, the phonon frequency spectra capture the properties expected from the dispersion relations for silicon.


2016 ◽  
Vol 850 ◽  
pp. 379-385
Author(s):  
Kai Xiong ◽  
Yi Yang Zhang ◽  
Jian Feng Gu

In this paper, the uniaxial compression of Mg, Ti, Zr and Co single crystals along the direction is performed by molecular dynamics (MD) to investigate the elastic-to-plastic transition in these hexagonal close-packed (hcp) metals. Two deformation twinning modes are observed in these simulations, including the twinning in Ti, Zr and Co and the [0001] twinning in Mg. The underlying atomistic mechanisms of these twinning modes are analyzed in detail.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Ken-ichi Saitoh ◽  
Tomohiro Sato ◽  
Masanori Takuma ◽  
Yoshimasa Takahashi ◽  
Ryuketsu Chin

To clarify the nanosized mechanism of good lubrication in copper disulfide (Cu2S) crystal which is used as a sliding material, atomistic modeling of Cu2S is conducted and molecular dynamics (MD) simulations are performed in this paper. The interatomic interaction between atoms and crystalline structure in the phase of hexagonal crystal of Cu2S are carefully estimated by first-principle calculations. Then, approximating these interactions, we originally construct a conventional interatomic potential function of Cu2S crystal in its hexagonal phase. By using this potential function, we perform MD simulation of Cu2S crystal which is subjected to shear loading parallel to the basal plane. We compare results obtained by different conditions of sliding directions. Unlike ordinary hexagonal metallic crystals, it is found that the easy-glide direction does not always show small shear stress for Cu2S crystal. Besides, it is found that shearing velocity affects largely the magnitude of averaged shear stress. Generally speaking, higher velocity results in higher resistance against shear deformation. As a result, it is understood that Cu2S crystal exhibits somewhat liquid-like (amorphous) behavior in sliding condition and shear resistance increases with increase of sliding speed.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract We have investigated the shock-induced plasticity and phase transition in the hexagonal columnar nanocrystalline (HCN) Mg by large-scale nonequilibrium molecular dynamics simulations (NEMD). The preexisting grain boundaries (GBs) induce the nucleation of the {10-12} twins for the local stress relaxation. The twins grow up in grains leading to the orientation rotation. The phase transition from the hexagonal close-packed (HCP) phase to the body-centered cubic (BCC) phase begins when the migrating twin grain boundaries (TGBs) meet in A- and C-type grains, and continues in the plastic deformation regions. The phase-transition pathway involves two steps: the reorientation and phase transformation.


2016 ◽  
Vol 63 (1) ◽  
pp. 9-18
Author(s):  
Jakob Novak

AbstractSolid–liquid phase transition has been simulated by the molecular dynamics method, using isobaric–isoenthalpic ensemble. For interatomic potential, glue potential has been selected. The original algorithm for bookkeeping of the information on neighbouring relationships of the atoms has been developed and used in this research. Time consumption for calculation of interatomic forces has been reduced from o(N2) to o(N) by the use of this algorithm.Calculations show that phase transition from solid to liquid occurs between 1,000 K and 1,300 K. The simulated temperature of phase transition is higher than the experimental value due to the absence of crystal defects. If constant heat flux is supplied, temperature decreases during melting because the superheated state becomes unstable. During the cooling process, no significant changes of the observed variables were detected due to the high cooling rate, which prevents crystallisation.


2010 ◽  
Vol 638-642 ◽  
pp. 1585-1590 ◽  
Author(s):  
Dominic Phelan ◽  
Nicole Stanford ◽  
B. Thijsse ◽  
Jilt Sietsma

The deformation behaviour of magnesium single crystals under plane strain conditions has been examined using molecular dynamics modelling. The simulations were based on an existing atomic potential for magnesium taken from the literature. A strain of 10% was applied at rates of 3x109s-1 and 3x107s-1. The simulations predicted the formation of mechanical twins that accommodated extension in the c-axis direction of the hexagonal unit cell. However, the predicted twin is not of the same kind found in magnesium, but is that commonly observed in titanium. It is believed that further analysis of the physical properties predicted by this interatomic potential will shed more light on the atomic processes controlling twinning in Magnesium alloys. It also highlights the need for improvements to the interatomic potential such that more accurate deformation behaviour can be attained.


1971 ◽  
Vol 49 (16) ◽  
pp. 2160-2180 ◽  
Author(s):  
Z. S. Basinski ◽  
M. S. Duesbery ◽  
Roger Taylor

The behavior of the screw dislocation core in the presence of an external shear stress has been examined for the body-centered cubic and hexagonal close-packed phases of a model sodium lattice, using an effective ion–ion potential calculated from first principles. The Peierls stress for screw dislocations in the b.c.c. lattice at 0 °K is dependent on the orientation of the applied shear stress, and has a minimum value of 0.0105G, where G is the shear modulus, for slip in the twinning direction on {112} planes. The Peierls stress in the h.c.p. lattice is at least 25 times smaller. Dislocation movement in the model b.c.c. lattice takes place by unit translations on {110} planes, with the selection rule that no two consecutive translations can take place on the same slip plane.


Sign in / Sign up

Export Citation Format

Share Document