scholarly journals The performance of calcined serpentine to simultaneously remove fluoride, iron and manganese

Author(s):  
Xilin Li ◽  
Qi Wang ◽  
Ling Liu ◽  
Siyuan Liu

Abstract To solve the problem of high fluoride, iron and manganese concentrations in groundwater, serpentine (Srp) was modified by metal salt impregnation, acid-base activation and calcination, and the effects of these three modifications on removal performance of Srp were compared. Specifically, the effects of the calcined serpentine (Csrp) dose, reaction time, pH, and temperature on the removal performance of F−, Fe2+ and Mn2+ on Csrp were analysed. An isothermal adsorption model and adsorption kinetic equation were established and confirmed through SEM, EDS, XRD and FTIR spectroscopy to analyse the mechanism of removing F−, Fe2+ and Mn2+ by Csrp. The results show that when 3 g/L Csrp was used to treat water samples with 5 mg/L F−, 20 mg/L Fe2+, and 5 mg/L Mn2+ (pH of 6, reaction temperature of 35 °C, and time of 150 min), the removal rates of F−, Fe2+, and Mn2+ were 94.3%, 99.0%, 98.9%, respectively. The adsorption of F−, Fe2+ and Mn2+ on Csrp follows the quasi-second-order kinetic equation and Langmuir isotherm adsorption model. After 5 cycles of regeneration of Csrp, Csrp can still maintain good properties of fluoride,iron and manganese removal.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xinrui Feng ◽  
Shaoshuai Sun ◽  
Ge Cheng ◽  
Lei Shi ◽  
Xiangshan Yang ◽  
...  

The magnetic adsorption material of polyaniline (PANI) with amino functional group combined with CuFe2O4 (CuFe2O4/PANI nanocomposite) has been described in this work. It has been characterized by TEM, XRD, XPS, BET, FTIR, and VSM, respectively. Significantly, it exhibits extremely high maximum adsorption capacity (322.6 mg/g) for removal of uranyl ions from wastewater at a pH of 4. The adsorption process is consistent with the quasisecond-order kinetic equation, and the isotherm and kinetic data are accurately described by the Langmuir isothermal adsorption model. Furthermore, the magnetic CuFe2O4/PANI displays stable adsorption performance for uranyl ions after five cycles of recovery in acid medium, which indicates it possesses good recovery due to its magnetism and excellent regeneration ability for reusability.


2011 ◽  
Vol 243-249 ◽  
pp. 4956-4959
Author(s):  
Jian Chao Hao ◽  
Hui Fen Liu ◽  
Dong Ling Wei ◽  
Li Jun Shi ◽  
Jun Li Li ◽  
...  

The relationship between formaldehyde emission and time was researched and a mathematical model was developed which describes the variation of formaldehyde with time in the airtight chamber. It was found that high quality composite floor was in line with 0-order kinetic equation and low quality composite floor was in line with 1-order kinetic equation. Besides, the effect of activated carbon adsorption on formaldehyde was studied and the result showed that activated carbon had poor adsorption on formaldehyde for weak van der waals force.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 155-160 ◽  
Author(s):  
Y.-S. Ma ◽  
S.-T. Huang ◽  
J.-G. Lin

In this study, The Fenton process was applied as a pretreatment method to treat industrial wastewater containing 4-nitrophenol (4-NP). The effect of oxidant dosages on the decomposition of 4-NP and the reaction kinetics were investigated. More than 99% of 4-NP was readily decomposed when the reaction was carried out at oxidant concentrations of 5 mM H2O2 and 5 mg/L Fe2+ for 2 hours. The total nitrogenous compounds and the nitrogen gas evolved, accounted for 88% of the initial nitrogen concentration. However, the maximum DOC removal efficiency was 30.6%; and only 1/3 of 4-NP was mineralized to carbon dioxide by the Fenton process. 4-NP degradation profiles fitted well into a pseudo first-order kinetic equation; degradation rate constant (min-1) of 4-NP increased from 4.3×10-3 to 66.1×10-3 with increasing dosages of H2O2 and Fe2+. In addition, the t value was calculated for studying the significance of simulation by the t-test. It was found that the t value was greater than the value for 99% confidence. This result suggested that the 4-NP decomposition profile could be described by the pseudo first-order kinetic equation. Biodegradability of 4-NP before and after the reaction was 0.018 and 0.594, respectively.


2019 ◽  
Vol 68 (7) ◽  
pp. 495-508
Author(s):  
Zhongmin Li ◽  
Wanwan Wu ◽  
Wenyan Jiang ◽  
Guangtao Wei ◽  
Yunshang Li ◽  
...  

Abstract The adsorption of Ni(II) by a thermo-sensitive adsorbent of methylcellulose/calcium alginate beads (CAMCBs) was studied using batch adsorption tests to determine the adsorption process and properties, the effects of adsorbent dosage, initial concentration, adsorption time and temperature. The adsorption process was further investigated using kinetics, isotherms and thermodynamic methods. The kinetics and isotherms studies showed the adsorption of Ni(II) on CAMCBs was fitted by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, respectively. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic at lower temperature, and the entropy of the adsorption process was negative. In the study of regeneration, it was confirmed that under the temperature of 60 °C, the desorption agent of CaCl2 with concentration of 3 g·L−1 was more conducive to the desorption of Ni(II) from CAMCBs. Both adsorption capacity and mechanical strength of the used CAMCBs could be basically recovered to the level of fresh CAMCBs after desorption. The prepared CAMCBs had a good property of adsorption of Ni(II) and an excellent regeneration performance.


2011 ◽  
Vol 393-395 ◽  
pp. 1189-1192
Author(s):  
Ying Xian Zhao ◽  
Bo Shen

The hydrocracking of a pentane-insoluble asphaltene over NiMo/γ-Al2O3 at 623 - 703 K was investigated. The second order kinetic equation fits experimental data of asphaltene conversion adequately, giving the apparent activation energy to be 144 kJ/mol over the temperature range. Average molecular weight of liquid product was reduced significantly with increasing temperature.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3338
Author(s):  
Yunjie Ma ◽  
Xin Gao ◽  
Yang Ruan ◽  
Hang Cui ◽  
Li Zhang ◽  
...  

Resin based covalent organic framework material was used as filler for solid phase extraction (SPE), and the solid phase extraction effect was compared with that of traditional COF material (TpBD COFs). The enrichment capacity of four phthalate esters (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate) in beverage samples was investigated by SPE. Adsorption experiments showed that the kinetic adsorption behavior of COF materials for phthalate esters (PAEs) was more consistent with the quasi-second-order kinetic adsorption model, and the static adsorption behavior is more in line with the Freundlich isothermal adsorption model. Solid phase extraction experiments proved that the SPE column prepared with two COF materials as adsorbents had good adsorption effects, high recovery (water: 97.99–100.56% and beverage: 97.93–100.23%) and were reusable (50 cycles), which could meet the requirements for trace detection of phthalate ester. It was found that the solid phase extraction effect was better than the four types of commercial SPE columns. The new COF material reduced the cost of monomer use and provided the possibility for its industrial production. Meanwhile, it also provided a new feasible scheme for enriching trace phthalate esters in practical samples.


1996 ◽  
Vol 33 (7) ◽  
pp. 141-145 ◽  
Author(s):  
Muwaffaq M. Saqqar ◽  
M. B. Pescod

The performance of anoxic and facultative ponds in Jordan was investigated for 12 months. Calculated values of the first order kinetic equation rate for CBOD removal (KCBOD) has resulted in different KCBOD's for different ponds in the same month, at the same temperature. It is evident that factors other than temperature must influence values of KCBOD. The KCBOD values determined were generally lower than those reported in the literature. The maximum value found was only 0.16 (/day). A pond was emptied after 18 months of operation and sediment was found randomly distributed over the pond area, with a depth ranging from 2 to 6 cm (averaging ≈ 4 cm). A simple model has been established to estimate sediment depth (Hs in cm) in terms of the operating time in months (t).


Author(s):  
Dading Zhang ◽  
Yanqiu Xu ◽  
Xiaofei Li ◽  
Lina Wang ◽  
Xuwen He ◽  
...  

The effects of sepiolite, montmorillonite, and attapulgite on the removal and immobilization of Cr(VI) in water and soil were studied. X-ray diffraction (XRD) characterizations showed that the purities of these three mineral materials decreased in the following order: montmorillonite > attapulgite > sepiolite, and that their surface molecular bond types were similar. The adsorption potential of Cr(VI) in aqueous solutions of the three mineral materials was in the following order: sepiolite > attapulgite > montmorillonite. The adsorption mechanism for attapulgite was consistent with the Freundlich isotherm adsorption model, whereas that for montmorillonite was more consistent with the Langmuir model. Sepiolite had a good fitting effect for both isothermal adsorption models. For montmorillonite and attapulgite, a lower pH corresponded to a higher removal of Cr(VI). For sepiolite, however, the removal efficiency of Cr(VI) from an aqueous solution was the lowest at a pH of approximately 5.0. The results of the soil toxicity characteristic leaching procedure showed that, following the addition of 15% sepiolite, attapulgite, or montmorillonite to the contaminated soil, Cr(VI) concentrations in the leachates decreased by 16.8%, 18.9%, and 15.9%, respectively, and the total Cr concentrations in the leachates were reduced by 21.2%, 29.2%, and 17.6%. Of the three mineral materials, attapulgite demonstrated the highest Cr(VI) immobilization efficiency in soil. This study emphasizes the effect of attapulgite on the immobilization of Cr(VI) in soil and aqueous solutions, thus providing a theoretical basis for the potential application of natural mineral material remediation of Cr(VI)-contaminated aqueous solutions and soils.


Sign in / Sign up

Export Citation Format

Share Document