Squeezed Under the Sheet: White Mica Records High Tectonic Stresses Within a Decollement Thrust

Author(s):  
Miisa Häkkinen ◽  
Samuel Angiboust ◽  
Benoit Dubacq ◽  
Martine Simoes

<p>Tectonic stresses at the base of decollement thrusts are generally expected to be low due to the presence of mechanically weak evaporites. Yet, the presence of abundant micro-seismicity in the region expected to correspond to the evaporitic layer remains paradoxical. We study here a fossil thrust zone from the base of the Digne nappe (SE France) where exotic thrust slices formed by brecciated Paleozoic basement micaschists are observed within the Mio-Pliocene decollement. Petrographic investigations reveal the presence of highly-substituted phengitic rims (up to Si=3.43 apfu) around pre-alpine muscovitic cores. Similar micaschists sampled in a basement high further North do not exhibit these phengitic rims around muscovite, thus suggesting that white mica zoning relates to a younger overprint. Such high-Silica phengites are commonly found in high-pressure terranes (i.e. 7-15 kbars depending on the buffering assemblage) but are not expected in foreland regions, such as in the Digne area where the overburden has never been thicker than c.5km (i.e. approximately 1.3 kbar). We propose that the mica zoning observed reflects the former presence of non-lithostatic stresses (possibly on the order of several kilobars) related to the elastic charging of a thrust slice “squeezed” at the base of the moving nappe. This finding sheds light on stress distribution as well as on the origin of micro-seismicity along active decollement thrusts in orogenic belts.</p>

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 125 ◽  
Author(s):  
Christopher J. Barnes ◽  
Katarzyna Walczak ◽  
Emilie Janots ◽  
David Schneider ◽  
Jarosław Majka

The Vestgӧtabreen Complex exposed in the Southwestern Caledonian Basement Province of Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex. Cooling of the Upper Unit during exhumation occurred at 476 ± 2 Ma, shortly after eclogite-facies metamorphism. The two units were juxtaposed at 454 ± 6 Ma. This was followed by subaerial exposure and deposition of Bullbreen Group sediments. A 430–400 Ma late Caledonian phase of thrusting associated with major sinistral shearing throughout Svalbard deformed both the complex and the overlying sediments. This phase of thrusting is prominently recorded in the Lower Unit, and is associated with a pervasive greenschist-facies metamorphic overprint of high-pressure lithologies. A c. 365–344 Ma geochronological record may represent an Ellesmerian tectonothermal overprint. Altogether, the geochronological evolution of the Vestgӧtabreen Complex, with previous petrological and structural studies, suggests that it may be a correlative to the high-pressure Tsäkkok Lens in the Scandinavian Caledonides. It is suggested that the Vestgӧtabreen Complex escaped to the periphery of the orogen along the sinistral strike-slip shear zones prior to, or during the initial stages of continental collision between Baltica and Laurentia.


2020 ◽  
Vol 300 ◽  
pp. 110163
Author(s):  
Giorgia Confalonieri ◽  
Marco Fabbiani ◽  
Rossella Arletti ◽  
Simona Quartieri ◽  
Francesco Di Renzo ◽  
...  
Keyword(s):  

2014 ◽  
Vol 590 ◽  
pp. 96-100 ◽  
Author(s):  
Hai Cheng Li ◽  
Xu Jing Zhang ◽  
Fu Min Liang

In this paper, we integrated use hydraulics, seepage flow mechanics, rock mechanics, and finite element simulation analysis and other methods to study the rock fragmentation mechanism of high pressure water jet. We make tensile stress - crack expansion comprehensive rock fragmentation model for the screw drilling of high pressure water jet. We make finite element simulation according to the mechanism of integrated model of high pressure water jet process, to analysis the internal rock stress distribution and external rock stress distribution of the fluid, and come to the reasonable number of high-pressure water jet nozzle hole. It is verified by the high pressure water jet breaking rock inside experiments of tensile stress - comprehensive rock fragmentation fracture expansion model, summarizes the law of high pressure water jet breaking rock, and we get to know reasonable drilling mode of the high pressure water jet is screw drilling with pitch of 120mm. At present there are two main types of the micro mechanism of the high pressure water jet. One is stress and tensile damage, because of the action produced by stress wave of the high pressure water jet impacting on rock, which mainly makes the tensile failure of rock; another one is crack expansion damage, under the effect of quasi static pressure radiation of water jet, the coupling effect between water shooting jet and rock pore skeleton, which make the rock pore, throat, and micro cracks expanding gradually, eventually the macro damage.


1994 ◽  
Vol 131 (1) ◽  
pp. 123-136 ◽  
Author(s):  
G. I. Alsop

AbstractBroad zones of distributed shear operating through mid-crustal regions of orogenic belts may incorporate narrow horizons of intense localized deformation culminating in discrete, large magnitude displacements. The relative importance and relationship between distributed and localized shear are influenced by a variety of factors including lithological variation, pre-existing structural anisotropy, strain rate and migration of fluids. Rigorous structural analysis of lower amphibolite facies Dalradian metasediments in northwestern Ireland demonstrates that an early (D1) discrete ductile detachment was subsequently reactivated during distributed non-coaxial D2 deformation operating in a broad zone through the structural pile. Regional shear was directed towards the southeast and resulted in the generation and translation of kilometre-scale, isoclinal, recumbent sheath folds which close and face towards the transport direction. The D1 detachment is clearly folded around the hinges of these major folds, whilst on fold limbs it was reactivated and acted as a local décollement within the zone of distributed shear. Shear criteria along the detachment indicate a southeast-directed translation of the major folds, in sympathy with regional shear. A broad zone of D3 translation operating through the nappe pile resulted in coaxial refolding of large scale F2 folds by the D3 Ballybofey Nappe producing a complex fold interference pattern. Non-coaxial D3 deformation resulted in continued reactivation of local decollements, together with the initiation of east-southeast directed oblique thrusts and partial dismemberment of D2 folds. Detailed structural investigation allows concepts of distributed and localized shear to be evaluated and models of crustal deformation to be assessed.


2018 ◽  
Vol 89 (3) ◽  
pp. 035106
Author(s):  
Liang Zhao ◽  
Mingzhe Li ◽  
Liyan Wang ◽  
Erhu Qu ◽  
Zhuo Yi

Tectonics ◽  
2020 ◽  
Vol 39 (7) ◽  
Author(s):  
C. J. Barnes ◽  
P. Jeanneret ◽  
K. Kullerud ◽  
J. Majka ◽  
D. A. Schneider ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Mayda Arrieta-Prieto ◽  
Carlos Zuluaga-Castrillón ◽  
Oscar Castellanos-Alarcón ◽  
Carlos Ríos-Reyes

<p>High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones and to try to reconstruct P-T trajectories for these complexes.</p><p>Previous studies on the Raspas complex (southern Ecuador) agree to state that it is composed of metamorphic rocks, mainly blueschists and eclogites, containing the mineral assemblage: glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite; which stabilized in metamorphic conditions of high pressure and low temperature. Additionally, the Raspas Complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during the Late Jurassic - Early Cretaceous interval; and the exhumation of the complex was related to subduction channels. However, the evidence presented in the existing literature makes little emphasis on the reconstruction of thermobarometric models for the rocks of this complex.</p><p>By combining petrographic observations, whole-rock chemistry, and mineral chemistry in this work; it was possible to determine that pressure values of 10 ± 3 Kbar and temperature values of 630 ± 30 ° C, (obtained by simulations with THERMOCALC®) correspond to an event of retrograde metamorphism, suffered by the complex during its exhumation. This theory is complemented by the specific textures (that suggest this retrograde process) observed during petrographic analysis, such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.</p><p>The results obtained, together with the thermobarometry data published for the Arquía complex in Colombia, allow us to establish a P-T trajectory, that may suggest a genetic relationship between these two complexes as a result of the tectonic processes associated with an active subduction margin that affected the NW margin of the South American plate at the end of the Jurassic.</p><p> </p>


2020 ◽  
Author(s):  
Mohd Baqar Raza ◽  
Fernando Corfu ◽  
Pritam Nasipuri

<p>Tonalite-trondhjemite-granodiorite gneisses (TTG) are the oldest litho-units of the Bundelkhand craton. The supracrustal rocks include variable deformed mafic volcanics and Banded Iron Formation. Magmatic zircons from the TTG’s yield an upper intercept of ~ 3590 Ma. The TTG’s gradually grades to a Na-feldspar rich A type porphyric granite towards the south. In this abstract, we report mineralogical, geochemical, and geochronological information of high silica- low Ca - high Na A-type granite from Bundelkhand craton.</p><p>In the TAS diagram, the studied samples plot in the field of granite and have a metaluminous affinity with high Ga/Al and Ce + Y + Nb + Zr values typical of A-type granites. In a primitive normalized multi-element spider diagram, the studied samples exhibit negative Nb, Ti, and P anomalies characteristics of a subduction zone setting. The chondrite normalized REE’s exhibit a strong fractionated pattern with negative Eu anomaly; the LREE are enriched and the HREE depleted with moderate to high (La/Yb)<sub>CN </sub>ratios ranging from 11.12 to 26.24 ppm. The studied samples have plagioclase compositions that vary from X<sub>Ab </sub>= 0.980-0.997 and chlorite compositions varying from X<sub>Mg </sub>= 0.309-0.469.</p><p>Phase equilibria modeling yield an emplacement temperature of 700-750<sup>O</sup>C, at 1.0 GPa. Most of the zircon grains are prismatic with visible cores and rims in optical examinations. In a U-Pb concordia diagram, the grains yield an upper intercept of 2536.6 ± 1.8 Ma. The geochemical and geochronological data taken together, indicate the Na-rich A-type granite generated by the high temperature and high-pressure partial melting of Archaean supracrustal rocks.</p>


2020 ◽  
Author(s):  
Francesca Piccoli ◽  
Pierre Lanari ◽  
Jörg Hermann ◽  
Thomas Pettke

<p>Subducted metapelites are more prone to re-equilibrate during exhumation than mafic or ultramafic rocks to the point that recognizing high-pressure (HP) relicts is often very challenging. Geologic evidence from the Cima Lunga Unit (Central Alps) show this apparent discrepancy between high to ultra-high pressure metamorphism (28 kbar and 780 °C) recorded in mafic/ultramafic lenses, and Barrovian metamorphism (<10 kbar, 650°C) in the adjacent metapelitic rocks. We collected a white mica – garnet – biotite – plagioclase – kyanite (+ quartz, + zircon, + rutile) bearing metapelite adjacent to the garnet metaperidotite lens that displays an apparently well equilibrated Barrovian mineral assemblage (garnet + plagioclase + biotite), with no macroscopic or microtextural indication of a HP and/or HT metamorphic event (e.g. omphacite crystals; migmatitic texture; polyphase inclusions). Nevertheless, microstructures like atoll-like garnet or large white mica flakes surrounded by biotite and ilmenite replacing rutile suggest incomplete re-equilibration. We investigated garnet and phengite crystals by electron probe and laser ablation-ICP-MS mapping. Major and trace element mapping reveals very complex mineral zoning in both minerals. In particular, high Ti content in phengite and increasing P and Zr contents in pyrope-rich garnet indicate that the studied rock underwent a HP-HT event. This is also supported by Zr in rutile thermometry that indicates temperatures well above the Barrovian metamorphism (T > 700 °C). We combined detailed textural analysis with petrological-geochemical data and thermodynamic modelling to reconstruct the metamorphic evolution of the studied rock. We show that, thank to incomplete re-equilibration, the rock documents an evolution from prograde to UHP-HT peak (27 kbar and 800 °C) to retrograde (Barrovian) conditions (10 kbar and 620 °C). Noteworthy, peak metamorphic conditions of metapelite coincide with peak metamorphic conditions of the garnet metaperidotite. Lastly, geochemical evidence for minor wet melting of the studied metapelite at HP-HT conditions was recognized and is likely linked to the dehydration of chlorite to form garnet peridotite in the adjacent ultramafic body. We propose that metapelites and ultramafic rocks were coupled before subduction or at least in its early stage. This finding opens new scenarios for the geodynamic interpretation of the Cima Lunga unit. We propose that the ultramafic lenses at Cima di Gagnone were parts of the exhumed and serpentinised mantle emplaced at the hyper-extended European continental margin of the Piemont-Ligurian ocean. Slices of the margin were detached and tectonically mixed in the subduction channel. These new constraints call for re-evaluation of the paleogeographic position of the Adula-Cima Lunga nappe.</p>


2020 ◽  
Author(s):  
Francesco Giuntoli ◽  
Giulio Viola

<p>Exhumation of subducted high-pressure units is favoured by relatively narrow, high-strain shear zones, where most metamorphic and deformational processes occur. Unfortunately, these are commonly overprinted and/or partly or fully obliterated along the exhumation path by younger fabrics or by metamorphic re-equilibration. Their identification and characterization are, therefore, of primary importance when aiming at reconstructing the deepest (and thus earliest) tectonometamorphic history of high-pressure crustal units.</p><p>The Northern Apennines (Italy) offer the opportunity to study a unique setting where continental units (Tuscan Metamorphic Units) were subducted to high-pressure conditions and then exhumed and juxtaposed against non-metamorphic units (Tuscan Nappe). We have studied a well exposed section in the Monticiano-Roccastrada Unit of the Mid Tuscan Ridge (MTR), where a mesoscopic (~20 m length and 5 m high) compressional duplex deforms the Palaeozoic-Triassic quartz-rich metasandstones, metaconglomerates and minor metapelites of the Monte Quoio - Montagnola Senese Unit with a top-to-the-NE sense of shear (Arenarie di Poggio al Carpino Formation; Casini et al., 2007).</p><p>Our approach is based on detailed fieldwork, microstructural and petrological investigations. Field observations reveal severe strain partitioning within the duplex between metapelite levels, corresponding to 10-50 cm thick high-strain zones, and metasandstone levels, which form relatively strain-free metric horses. Early generations of quartz veins are highly transposed (sheath folds occur) parallel to the metapelitic high-strain shear zones. Veins are composed of iso-oriented quartz, forming up to several centimetre long single-grain ribbons, Mg-carpholite (XMg~ 0.65) needles and K-white mica marking the stretching lineation. Carpholite in the transposed veins invariably defines the stretching direction of shear zones. These high-P veins coexist with a later generation of less deformed, oblique quartz veins. The mylonitic foliation in the metapelites is defined by quartz, chloritoid, pyrophyllite and K-white mica forming a stretching lineation coherent with the one visible in the veins. Geometrical, cross-cutting and petrographic relations suggest that there has occurred cyclic deformation between brittle and viscous conditions, with the veins forming broadly syn-mylonitic shearing. Thermodynamic modeling results suggest >0.8 GPa and ~350°C for the formation of both the high-pressure veins and the mylonitic foliation.</p><p>Shear zones were subsequently folded about the NNW-SSE axis of the regional antiform associated with the MTR. Later brittle overprinting is represented by quart-filled tension gashes and localized C’ planes, mostly within the more competent metasandstone levels, indicating top-to-the-SW reactivation. In summary, our results suggest a cyclic brittle-ductile behaviour occurring at high pressure conditions. This could potentially reflect the repeated alternation between aseismic creep (viscous) and coseismic slip (brittle) during the first stages of the exhumation history of this portion of the northern Apennines, from lower to middle crustal levels in a compressional top-to-the-NE setting. Dating of K-white mica is ongoing to constrain the geodynamic scenario of such shear zone.</p><p> </p><p>Casini, G., Decandia, F.A., Tavarnelli, E., 2007. Analysis of a mesoscopic duplex in SW Tuscany, Italy: implications for thrust system development during positive tectonic inversion. Geol. Soc. London, Spec. Publ. 272, 437–446.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document