tandem repeat proteins
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 2086 (1) ◽  
pp. 012123
Author(s):  
A A Vronskaia ◽  
A D Mikushina ◽  
I E Eliseev

Abstract Tandem repeat proteins have composite structure and unique properties, which allow them to be used in multiple fields, such as soft photonics, drug delivery and textile industry. The recent discovery of squid ring teeth (SRT) proteins have expanded the existing repertoire of repetitive polypeptides. We chose previously unexplored squid B. magister for our research, isolated and analyzed a new protein forming its ring teeth and hooks, and amplified the corresponding gene. Finally, we used this new isolated SRT protein to fabricate transparent thin films and microspheres.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jazmine P. Hallinan ◽  
Lindsey A. Doyle ◽  
Betty W. Shen ◽  
Mesfin M. Gewe ◽  
Brittany Takushi ◽  
...  

AbstractCircular tandem repeat proteins (‘cTRPs’) are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Author(s):  
Romeo C. A. Dubini ◽  
Huihun Jung ◽  
Chloe H. Skidmore ◽  
Melik C. Demirel ◽  
Petra Rovó

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jana Aupič ◽  
Žiga Strmšek ◽  
Fabio Lapenta ◽  
David Pahovnik ◽  
Tomaž Pisanski ◽  
...  

AbstractNatural proteins are characterised by a complex folding pathway defined uniquely for each fold. Designed coiled-coil protein origami (CCPO) cages are distinct from natural compact proteins, since their fold is prescribed by discrete long-range interactions between orthogonal pairwise-interacting coiled-coil (CC) modules within a single polypeptide chain. Here, we demonstrate that CCPO proteins fold in a stepwise sequential pathway. Molecular dynamics simulations and stopped-flow Förster resonance energy transfer (FRET) measurements reveal that CCPO folding is dominated by the effective intra-chain distance between CC modules in the primary sequence and subsequent folding intermediates, allowing identical CC modules to be employed for multiple cage edges and thus relaxing CCPO cage design requirements. The number of orthogonal modules required for constructing a CCPO tetrahedron can be reduced from six to as little as three different CC modules. The stepwise modular nature of the folding pathway offers insights into the folding of tandem repeat proteins and can be exploited for the design of modular protein structures based on a given set of orthogonal modules.


2020 ◽  
Vol 7 (4) ◽  
pp. 165
Author(s):  
Isis Indaiara Gonçalves Granjeiro Taques ◽  
Amanda Noeli Silva Campos ◽  
Mayara Lima Kavasaki ◽  
Sayanne Luns Hatum de Almeida ◽  
Daniel Moura de Aguiar

Tandem repeat proteins (TRPs) are major immunoreactive proteins of Ehrlichia canis, which have been used in the serological diagnosis of different genotypes of the microorganism. TRP19 is preserved among different E. canis isolates expressed on both reticulate and dense-core cells and observed in the extracellular matrix or associated with the morula membrane. TRP36 is differentially expressed only on the surface of the dense-core form of the bacterium and exhibits more divergence among isolates. The aim of this study was to evaluate the distribution of the American (USTRP36), Brazilian (BrTRP36) and Costa Rican (CRTRP36) genotypes of E. canis in Brazil, using ELISA assays. Serum samples of 814 dogs from 49 municipalities from all over Brazil were analyzed. Our results showed that 34% of the samples were reactive to the USTRP36 genotype and 32.6% to the BrTRP36 genotype. The two genotypes appeared to occur equally throughout Brazil, although the frequency of seropositivity was lower in the south than in the country’s other regions. Dogs that reacted to at least one of the synthetic peptides (TRP19 and TRP36) were 456 (56%). A few dogs (n = 5; 0.61%) reactive to the E. canis TRP36 genotype (CRTRP36) were also detected in the northeast and southern regions. We concluded that the American and Brazilian genotypes of E. canis are distributed evenly in Brazil, especially in the tropical region, while the temperate region in the south presented the lowest prevalence rates. This study offers the first report of dogs seropositive for the Costa Rican genotype in Brazil.


Author(s):  
Isis Taques ◽  
Amanda Campos ◽  
Mayara Kavazaki ◽  
Sayanne Almeida ◽  
Daniel Aguiar

Tandem repeat proteins of 36 kDa (TRP36) are major immunoreactive proteins of Ehrlichia canis, which have been used in the serological diagnosis of different genotypes of the microorganism. The aim of this study was to evaluate the distribution of the American (USTRP36), Brazilian (BrTRP36) and Costa Rican (CRTRP36) genotypes of E. canis in Brazil, using ELISA assays. Serum samples of 815 dogs from 49 cities from all over Brazil were analyzed. Our results showed that 33.9% of the samples were reactive to the USTRP36 genotype and 32.6% to the BrTRP36 genotype. The two genotypes appeared to occur equally throughout Brazil, although the frequency of seropositivity was lower in the south than in the country’s other regions. Co-positivity for the American and Brazilian genotypes was also observed in 16% of samples. A few dogs (n=5; 0.6%) reactive to E. canis-TRP36 genotype (CRTRP36) were also detected in the northeast and southern regions. We conclude that the American and Brazilian genotypes of E. canis are distributed evenly in Brazil, especially in the tropical region, while the temperate region in the south presented the lowest prevalence values. This study offers the first report of dogs seropositive for the Costa Rican genotype in Brazil.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Tian Luo ◽  
Jignesh G. Patel ◽  
Xiaofeng Zhang ◽  
David H. Walker ◽  
Jere W. McBride

Abstract Immunomolecular characterization of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) has defined protein orthologs, including tandem repeat proteins (TRPs) that have immunodominant linear antibody epitopes. In this study, we combined bioinformatic analysis and cell-free protein expression to identify undiscovered immunoreactive E. ch. and E. ca. hypothetical proteins. Antigenicity of the E. ch. and E. ca. ORFeomes (n = 1105 and n = 925, respectively) was analyzed by the sequence-based prediction model ANTIGENpro, and we identified ~250 ORFs in each respective ORFeome as highly antigenic. The hypothetical proteins (E. ch. n = 93 and E. ca. n = 98) present in the top 250 antigenic ORFs were further investigated in this study. By ELISA, 46 E. ch. and 30 E. ca. IVTT-expressed hypothetical proteins reacted with antibodies in sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 15 E. ch. and 16 E. ca. proteins consistently reacted with a panel of sera from patients or dogs, including many that revealed the immunoreactivity of “gold standard” TRPs. Antibody epitopes in most (>70%) of these proteins exhibited partial or complete conformation-dependence. The majority (23/31; 74%) of the major immunoreactive proteins identified were small (≤250 aa), and 20/31 (65%) were predicted to be secreted effectors. Unlike the strong linear antibody epitopes previously identified in TRP and OMP orthologs, there were contrasting differences in the E. ch. and E. ca. antigenic repertoires, epitopes and ortholog immunoreactivity. This study reveals numerous previously undefined immunodominant and subdominant antigens, and illustrates the breadth, complexity, and diversity of immunoreactive proteins/epitopes in Ehrlichia.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Albert Perez-Riba ◽  
Elizabeth Komives ◽  
Ewan R. G. Main ◽  
Laura S. Itzhaki

Abstract The simple topology and modular architecture of tandem-repeat proteins such as tetratricopeptide repeats (TPRs) and ankyrin repeats makes them straightforward to dissect and redesign. Repeat-protein stability can be manipulated in a predictable way using site-specific mutations. Here we explore a different type of modification - loop insertion - that will enable a simple route to functionalisation of this versatile scaffold. We previously showed that a single loop insertion has a dramatically different effect on stability depending on its location in the repeat array. Here we dissect this effect by a combination of multiple and alternated loop insertions to understand the origins of the context-dependent loss in stability. We find that the scaffold is remarkably robust in that its overall structure is maintained. However, adjacent repeats are now only weakly coupled, and consequently the increase in solvent protection, and thus stability, with increasing repeat number that defines the tandem-repeat protein class is lost. Our results also provide us with a rulebook with which we can apply these principles to the design of artificial repeat proteins with precisely tuned folding landscapes and functional capabilities, thereby paving the way for their exploitation as a versatile and truly modular platform in synthetic biology.


2019 ◽  
Vol 13 (2) ◽  
pp. 149-158
Author(s):  
Mohammad Reza Rahbar ◽  
Mahboubeh Zarei ◽  
Navid Nezafat ◽  
Manica Negahdaripour ◽  
Younes Ghasemi

Background: Acinetobacter baumannii is an important nosocomial pathogen with great ability to resist antibiotics. Tandem repeat proteins, abundant in prokaryotic proteomes, attract attention due to their role in virulence and various biological processes. Defining repeat- containing proteins may pave the way to find novel therapeutic targets as well as vaccine candidate and give pieces of evidence of mechanisms of evolution and adaptation of organisms to various environmental conditions. Objective: In the present study, we employed bioinformatics tools to define repeatcontaining proteins within A. baumannii proteome for emphasizing the existence of natural sources for synthesizing novel therapeutic and diagnosis material. Results: We defined various kinds of repeat modules in a number of proteins and compared the abundance of these proteins in some closely related species. No significant difference was observed in the count of repeat-containing proteins in different species. But the existence of some important virulence factors is mentionable in our screening. Conclusion: Repeat containing proteins are important biological determinants of A. baumannii and are well worth researching for finding drug targets and vaccine candidates. These proteins can be served as a template for designing and synthesizing peptides for therapeutic and diagnostic approaches.


2019 ◽  
Vol 116 (29) ◽  
pp. 14456-14464 ◽  
Author(s):  
Spencer A. Hughes ◽  
Fengbin Wang ◽  
Shengyuan Wang ◽  
Mark A. B. Kreutzberger ◽  
Tomasz Osinski ◽  
...  

Tandem repeat proteins exhibit native designability and represent potentially useful scaffolds for the construction of synthetic biomimetic assemblies. We have designed 2 synthetic peptides, HEAT_R1 and LRV_M3Δ1, based on the consensus sequences of single repeats of thermophilic HEAT (PBS_HEAT) and Leucine-Rich Variant (LRV) structural motifs, respectively. Self-assembly of the peptides afforded high-aspect ratio helical nanotubes. Cryo-electron microscopy with direct electron detection was employed to analyze the structures of the solvated filaments. The 3D reconstructions from the cryo-EM maps led to atomic models for the HEAT_R1 and LRV_M3Δ1 filaments at resolutions of 6.0 and 4.4 Å, respectively. Surprisingly, despite sequence similarity at the lateral packing interface, HEAT_R1 and LRV_M3Δ1 filaments adopt the opposite helical hand and differ significantly in helical geometry, while retaining a local conformation similar to previously characterized repeat proteins of the same class. The differences in the 2 filaments could be rationalized on the basis of differences in cohesive interactions at the lateral and axial interfaces. These structural data reinforce previous observations regarding the structural plasticity of helical protein assemblies and the need for high-resolution structural analysis. Despite these observations, the native designability of tandem repeat proteins offers the opportunity to engineer novel helical nanotubes. Moreover, the resultant nanotubes have independently addressable and chemically distinguishable interior and exterior surfaces that would facilitate applications in selective recognition, transport, and release.


Sign in / Sign up

Export Citation Format

Share Document