scholarly journals A review on the effects of ethanol/gasoline fuel blends on NOX emissions in spark-ignition engines

2021 ◽  
Vol 8 (4) ◽  
pp. 1465-1480
Author(s):  
Paolo Iodice ◽  
Amedeo Amoresano ◽  
Giuseppe Langella

Ethanol can be used as an alternative fuel for spark-ignition (SI) engines to increase the octane number and oxygen content of ethanol/gasoline blends, thereby reducing dependence on fossil fuels and the exhaust emissions of incomplete combustion products. Although it is widely agreed that ethanol can reduce CO and HC exhaust emissions, the literature on ethanol and NOX emissions is far from conclusive; hence there is a need for an in-depth, updated review of ethanol/gasoline blends in SI engines and the relative production of NOX emissions. In light of that, the present work aims to provide a comprehensive literature review on the current state of ethanol combustion in SI engines to shed definitive light on the potential changes in NOX emissions under various operating conditions. The first part of this paper discusses the feasibility of ethanol as an alternative transportation fuel, including world production and ethanol production processes. The physicochemical properties of ethanol and gasoline are then compared to analyze their effects on combustion efficiency and exhaust emissions. Then, the pathways of NOX formation inside the cylinder of SI engines are discussed in depth. Finally, we review and critically discuss the effects of ethanol concentration in blends and different engine parameters on NOX formation.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


1997 ◽  
Vol 119 (1) ◽  
pp. 45-49 ◽  
Author(s):  
N. T. Davis ◽  
V. G. McDonell ◽  
G. S. Samuelsen

To mitigate the environmental impact of next-generation gas turbine combustors, the emission performance at each condition throughout the load duty cycle must be optimized. Achieving this with a single combustor geometry may not be possible. Rather, the mixing processes and airflow splits must likely be modified as a function of load in order to (1) abate the emission of oxides of nitrogen, (2) maintain combustion efficiency, and (3) preclude lean blow-out over the entire duty cycle. The present study employs a model combustor to evaluate combustor performance as a function of load and explore the application of variable geometry to optimize performance at each condition. A parametric variation of flow splits is conducted at each load condition by independently adjusting the primary jet area and swirler choke area. The resultant impact on combustor performance is measured and quantified in terms of a cost function. The cost function is defined to increase with improving combustor performance (e.g., improving combustion efficiency and/or declining NOx emissions). Cycle operating conditions are found to alter the response mappings of efficiency and NOx. As a result, the optimal configuration of the combustor changes as the load is varied over the duty cycle. The results provide guidance on the application of active control.


Author(s):  
Xin Wang ◽  
Amir Khameneian ◽  
Paul Dice ◽  
Bo Chen ◽  
Mahdi Shahbakhti ◽  
...  

Abstract Combustion phasing, which can be defined as the crank angle of fifty percent mass fraction burned (CA50), is one of the most important parameters affecting engine efficiency, torque output, and emissions. In homogeneous spark-ignition (SI) engines, ignition timing control algorithms are typically map-based with several multipliers, which requires significant calibration efforts. This work presents a framework of model-based ignition timing prediction using a computationally efficient control-oriented combustion model for the purpose of real-time combustion phasing control. Burn duration from ignition timing to CA50 (ΔθIGN-CA50) on an individual cylinder cycle-by-cycle basis is predicted by the combustion model developed in this work. The model is based on the physics of turbulent flame propagation in SI engines and contains the most important control parameters, including ignition timing, variable valve timing, air-fuel ratio, and engine load mostly affected by combination of the throttle opening position and the previous three parameters. With 64 test points used for model calibration, the developed combustion model is shown to cover wide engine operating conditions, thereby significantly reducing the calibration effort. A Root Mean Square Error (RMSE) of 1.7 Crank Angle Degrees (CAD) and correlation coefficient (R2) of 0.95 illustrates the accuracy of the calibrated model. On-road vehicle testing data is used to evaluate the performance of the developed model-based burn duration and ignition timing algorithm. When comparing the model predicted burn duration and ignition timing with experimental data, 83% of the prediction error falls within ±3 CAD.


Author(s):  
Taylor F. Linker ◽  
Mark Patterson ◽  
Greg Beshouri ◽  
Abdullah U. Bajwa ◽  
Timothy J. Jacobs

Abstract The increased production of natural gas harvested from unconventional sources, such as shale, has led to fluctuations in the species composition of natural gas moving through pipelines. These variations alter the chemical properties of the bulk gas mixture and, consequently, affect the operation of pipeline compressor engines which use the gas as fuel. Among several possible ramifications of these variations is that of unacceptably high engine-out NOx emissions. Therefore, engine controller enhancements which can account for fuel variability are necessary for maintaining emissions compliance. Having the means to predict NOx emissions from a field engine can inform the development of such control schemes. There are several types of compressor engines; however, this study considers a large bore, lean-burn, two-stroke, integral compressor engine. This class of engine has unique operating conditions which make the formation of engine-out NOx different from typical automotive spark-ignited engines. For this reason, automotive-based methods for predicting NOx emissions are not sufficiently accurate. In this study, an investigation is performed on the possible NO and NO2 formation pathways which could be contributing to exhaust emissions. Additionally, a modeling method is proposed to predict engine-out NOx emissions using a 0-D/1-D model of a Cooper-Bessemer GMWH-10C compressor engine. Predictions are achieved with GRI-Mech3.0, a natural gas combustion mechanism, which allows for simulated formation of NOx species. The implemented technique is tuned using experimental data from a field engine to better predict emissions over a range of engine operating conditions. Tuning the model led to acceptable agreement across operating points varying in both load and trapped equivalence ratio.


2020 ◽  
Vol 8 (6) ◽  
pp. 1027-1032

Turbulence is an important parameter to be considered for effective combustion inside a cylinder. Heat transfer inside the cylinder affects the combustion process. Insufficient turbulence leads to incomplete combustion, resulting in pollution. Effective flame propagation leads to higher combustion rates in SI engines which in turn requires enough turbulence. Effective combustion efficiency can be achieved through higher flame propagation velocities. In the present work an attempt has been made to enhance the turbulence inside the cylinder of a single cylinder spark ignition engine by injecting solid nanoparticles into the air fuel mixture.


Author(s):  
N. T. Davis ◽  
V. G. McDonell ◽  
G. S. Samuelsen

To mitigate the environmental impact of next generation gas turbine combustors, the emission performance at each condition throughout the load duty cycle must be optimized. Achieving this with a single combustor geometry may not be possible. Rather, the mixing processes and air flow splits must likely be modified as a function of load in order to (1) abate the emission of oxides of nitrogen, (2) maintain combustion efficiency, and (3) preclude lean blow out over the entire duty cycle. The present study employs a model combustor to evaluate combustor performance as a function of load and explore the application of variable geometry to optimize performance at each condition. A parametric variation of flow splits is conducted at each load condition by independently adjusting the primary jet area and swirler choke area. The resultant impact on combustor performance is measured and quantified in terms of a cost function. The cost function is defined to increase with improving combustor performance (e.g., improving combustion efficiency and/or declining NOx emissions). Cycle operating conditions are found to alter the response mappings of efficiency and NOx. As a result, the optimal configuration of the combustor changes as the load is varied over the duty cycle. The results provide guidance on the application of active control.


2019 ◽  
Vol 100 ◽  
pp. 00053
Author(s):  
Jerzy Merkisz ◽  
Dawid Gallas ◽  
Maciej Siedlecki ◽  
Natalia Szymlet ◽  
Barbara Sokolnicka

The paper contains exhaust emission results for an RDE test drive of a passenger vehicle with a spark ignition bi-fuel engine fuelled with LPG. The tests were performed in accordance with the RDE test requirements, and their results were compared to the emission limits of the applicable EURO norm. The aim of the paper is to investigate the discrepancies in the real exhaust emissions between the gasoline-specific emission norms and real values from vehicle use when powered by LPG.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1738
Author(s):  
Zhenhao Tang ◽  
Xiaoyan Wu ◽  
Shengxian Cao

A data-driven modeling method with feature selection capability is proposed for the combustion process of a station boiler under multi-working conditions to derive a nonlinear optimization model for the boiler combustion efficiency under various working conditions. In this approach, the principal component analysis method is employed to reconstruct new variables as the input of the predictive model, reduce the over-fitting of data and improve modeling accuracy. Then, a k-nearest neighbors algorithm is used to classify the samples to distinguish the data by the different operating conditions. Based on the classified data, a least square support vector machine optimized by the differential evolution algorithm is established. Based on the boiler key parameter model, the proposed model attempts to maximize the combustion efficiency under the boiler load constraints, the nitrogen oxide (NOx) emissions constraints and the boundary constraints. The experimental results based on the actual production data, as well as the comparative analysis demonstrate: (1) The predictive model can accurately predict the boiler key parameters and meet the demands of boiler combustion process control and optimization; (2) The model predictive control algorithm can effectively control the boiler combustion efficiency, the average errors of simulation are less than 5%. The proposed model predictive control method can improve the quality of production, reduce energy consumption, and lay the foundation for enterprises to achieve high efficiency and low emission.


Author(s):  
Andrew Hockett ◽  
Michael Flory ◽  
Joel Hiltner ◽  
Scott Fiveland

Natural gas/diesel dual fuel engines used in oil and gas drilling operations must be able to meet NOx emissions limits across a wide range of substitution percentage, which affects the air to natural gas ratio or gas lambda. In a dual fuel engine operating at high substitution, premixed, propagating natural gas flames occur and the NOx formed in such premixed flames is known to be a strong function of gas lambda. Consequently there is interest in understanding how NOx formation in a dual fuel engine is affected by gas lambda. However, NOx formation in a dual fuel engine is complicated by the interaction with the non-premixed diesel jet flame. As a result, previous studies have shown that enriching the air-fuel ratio can either increase or decrease NOx emissions depending on the operating conditions investigated. This study presents multi-dimensional combustion simulations of an air-fuel ratio sweep from gas lambda 2.0 to 1.5 at 80% substitution, which exhibited a minimum in NOx emissions at a natural gas lambda of 1.75. Images from the simulations are used to provide detailed explanations of the physical processes responsible for the minimum NOx trend with natural gas lambda.


Sign in / Sign up

Export Citation Format

Share Document