portal phase
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 26)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 11 (12) ◽  
pp. 1255
Author(s):  
Véronique V. van Cooten ◽  
Daan J. de Jong ◽  
Frank J. Wessels ◽  
Pim A. de Jong ◽  
Madeleine Kok

This study’s aim was twofold. Firstly, to assess liver enhancement quantitatively and qualitatively in steatotic livers compared to non-steatotic livers on portal venous computed tomography (CT). Secondly, to determine the injection volume of contrast medium in patients with severe hepatic steatosis to improve the image quality of the portal venous phase. We retrospectively included patients with non-steatotic (n = 70), the control group, and steatotic livers (n = 35) who underwent multiphase computed tomography between March 2016 and September 2020. Liver enhancement was determined by the difference in attenuation in Hounsfield units (HU) between the pre-contrast and the portal venous phase, using region of interests during in three different segments. Liver steatosis was determined by a mean attenuation of ≤40 HU on unenhanced CT. Adequate enhancement was objectively defined as ≥50 ΔHU and subjectively using a three-point Likert scale. Enhancement of non-steatotic and steatotic livers were compared and associations between enhancement and patient- and scan characteristics were analysed. Enhancement was significantly higher among the control group (mean 51.9 ± standard deviation 11.5 HU) compared to the steatosis group (40.6 ± 8.4 HU p for difference < 0.001). Qualitative analysis indicated less adequate enhancement in the steatosis group: 65.7% of the control group was rated as good vs. 8.6% of the steatosis group. We observed a significant correlation between enhancement, and presence/absence of steatosis and grams of iodine per total body weight (TBW) (p < 0.001; adjusted R2 = 0.303). Deduced from this correlation, theoretical contrast dosing in grams of Iodine (g I) can be calculated: g I = 0.502 × TBW for non-steatotic livers and g I = 0.658 × TBW for steatotic livers. Objective and subjective enhancement during CT portal phase were significantly lower in steatotic livers compared to non-steatotic livers, which may have consequences for detectability and contrast dosing.


Kanzo ◽  
2021 ◽  
Vol 62 (11) ◽  
pp. 765-769
Author(s):  
Soo Ki Kim ◽  
Takako Fujii ◽  
Soo Ryang Kim ◽  
Hisato Kobayashi ◽  
Toyokazu Okuda ◽  
...  

Author(s):  
Rim Messaoudi ◽  
Faouzi Jaziri ◽  
Achraf Mtibaa ◽  
Faïez Gargouri ◽  
Antoine Vacavant

Reading and interpreting the medical image still remains the most challenging task in radiology. Through the important achievement of deep Convolutional Neural Networks (CNN) in the context of medical image classification, various clinical applications have been provided to detect lesions from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. In the diagnosis process for the liver cancer from Dynamic Contrast-Enhanced MRI (DCE-MRI), radiologists consider three phases during contrast injection: before injection, arterial phase, and portal phase for instance. Even if the contrast agent helps in enhancing the tumoral tissues, the diagnosis may be very difficult due to the possible low contrast and pathological tissues surrounding the tumors (cirrhosis). Alongside, in the medical field, ontologies have proven their effectiveness to solve several clinical problems such as offering shareable terminologies, vocabularies, and databases. In this article, we propose a multi-label CNN classification approach based on a parallel preprocessing algorithm. This algorithm is an extension of our previous work cited in the International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI) 2020. The aim of our approach is to ameliorate the detection of HCC lesions and to extract more information about the detected tumor such as the stage, the localization, the size, and the type thanks to the use of ontologies. Moreover, the integration of such information has improved the detection process. In fact, experiments conducted by testing with real patient cases have shown that the proposed approach reached an accuracy of 93% using MRI patches of [Formula: see text] pixels, which is an improvement compared with our previous works.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hui-zhu Chen ◽  
Xin-rong Wang ◽  
Fu-min Zhao ◽  
Xi-jian Chen ◽  
Xue-sheng Li ◽  
...  

PurposeTo develop and validate a radiomics model for predicting preoperative lymph node (LN) metastasis in high-grade serous ovarian cancer (HGSOC).Materials and MethodsFrom May 2008 to January 2018, a total of 256 eligible HGSOC patients who underwent tumor resection and LN dissection were divided into a training cohort (n=179) and a test cohort (n=77) in a 7:3 ratio. A Radiomics Model was developed based on a training cohort of 179 patients. A radiomics signature (defined as the Radscore) was selected by using the random forest method. Logistics regression was used as the classifier for modeling. An Integrated Model that incorporated the Radscore and CT_reported LN status (CT_LN_report) was developed and presented as a radiomics nomogram. Its performance was determined by the area under the curve (AUC), calibration, and decision curve. The radiomics nomogram was internally tested in an independent test cohort (n=77) and a CT-LN-report negative subgroup (n=179) using the formula derived from the training cohort.ResultsThe AUC value of the CT_LN_report was 0.688 (95% CI: 0.626, 0.759) in the training cohort and 0.717 (95% CI: 0.630, 0.804) in the test cohort. The Radiomics Model yielded an AUC of 0.767 (95% CI: 0.696, 0.837) in the training cohort and 0.753 (95% CI: 0.640, 0.866) in the test. The radiomics nomogram demonstrated favorable calibration and discrimination in the training cohort (AUC=0.821), test cohort (AUC=0.843), and CT-LN-report negative subgroup (AUC=0.82), outperforming the Radiomics Model and CT_LN_report alone.ConclusionsThe radiomics nomogram derived from portal phase CT images performed well in predicting LN metastasis in HGSOC and could be recommended as a new, convenient, and non-invasive method to aid in clinical decision-making.


2021 ◽  
Vol 10 (7) ◽  
pp. 205846012110306
Author(s):  
Payam Mohammadinejad ◽  
Lukasz Kwapisz ◽  
Jeff L Fidler ◽  
Shannon P Sheedy ◽  
Jay P Heiken ◽  
...  

Background Due to their easy accessibility, CT scans have been increasingly used for investigation of gastrointestinal (GI) bleeding. Purpose To estimate the performance of a dual-phase, dual-energy (DE) GI bleed CT protocol in patients with overt GI bleeding in clinical practice and examine the added value of portal phase and DE images. Materials and Methods Consecutive patients with GI bleeding underwent a two-phase DE GI bleed CT protocol. Two gastroenterologists established the reference standard. Performance was estimated using clinical CT reports. Three GI radiologists rated confidence in GI bleeding in a subset of 62 examinations, evaluating first mixed kV arterial images, then after examining additional portal venous phase images, and finally after additional DE images (virtual non-contrast and virtual monoenergetic 50 keV images). Results 52 of 176 patients (29.5%) had GI bleeding by the reference standard. The overall sensitivity, specificity, and positive and negative predictive values of the CT GI bleed protocol for detecting GI bleeding were 65.4%, 89.5%, 72.3%, and 86.0%, respectively. In patients with GI bleeding, diagnostic confidence of readers increased after adding portal phase images to arterial phase images ( p = 0.002), without additional benefit from dual energy images. In patients without GI bleeding, confidence in luminal extravasation appropriately decreased after adding portal phase, and subsequently DE images ( p = 0.006, p = 0.018). Conclusion A two-phase DE GI bleed CT protocol had high specificity and negative predictive value in clinical practice. Portal venous phase images improved diagnostic confidence in comparison to arterial phase images alone. Dual-energy images further improved radiologist confidence in the absence of bleeding.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1162
Author(s):  
Francesco Fiz ◽  
Guido Costa ◽  
Nicolò Gennaro ◽  
Ludovico la Bella ◽  
Alexandra Boichuk ◽  
...  

The impact of the contrast medium on the radiomic textural features (TF) extracted from the CT scan is unclear. We investigated the modification of TFs of colorectal liver metastases (CLM), peritumoral tissue, and liver parenchyma. One hundred and sixty-two patients with 409 CLMs undergoing resection (2017–2020) into a single institution were considered. We analyzed the following volumes of interest (VOIs): The CLM (Tumor-VOI); a 5-mm parenchyma rim around the CLM (Margin-VOI); and a 2-mL sample of parenchyma distant from CLM (Liver-VOI). Forty-five TFs were extracted from each VOI (LIFEx®®). Contrast enhancement affected most TFs of the Tumor-VOI (71%) and Margin-VOI (62%), and part of those of the Liver-VOI (44%, p = 0.010). After contrast administration, entropy increased and energy decreased in the Tumor-VOI (0.93 ± 0.10 vs. 0.85 ± 0.14 in pre-contrast; 0.14 ± 0.03 vs. 0.18 ± 0.04, p < 0.001) and Margin-VOI (0.89 ± 0.11 vs. 0.85 ± 0.12; 0.16 ± 0.04 vs. 0.18 ± 0.04, p < 0.001), while remaining stable in the Liver-VOI. Comparing the VOIs, pre-contrast Tumor and Margin-VOI had similar entropy and energy (0.85/0.18 for both), while Liver-VOI had lower values (0.76/0.21, p < 0.001). In the portal phase, a gradient was observed (entropy: Tumor > Margin > Liver; energy: Tumor < Margin < Liver, p < 0.001). Contrast enhancement affected TFs of CLM, while it did not modify entropy and energy of parenchyma. TFs of the peritumoral tissue had modifications similar to the Tumor-VOI despite its radiological aspect being equal to non-tumoral parenchyma.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3077
Author(s):  
Guido Costa ◽  
Lara Cavinato ◽  
Chiara Masci ◽  
Francesco Fiz ◽  
Martina Sollini ◽  
...  

Non-invasive diagnosis of chemotherapy-associated liver injuries (CALI) is still an unmet need. The present study aims to elucidate the contribution of radiomics to the diagnosis of sinusoidal dilatation (SinDil), nodular regenerative hyperplasia (NRH), and non-alcoholic steatohepatitis (NASH). Patients undergoing hepatectomy for colorectal metastases after chemotherapy (January 2018-February 2020) were retrospectively analyzed. Radiomic features were extracted from a standardized volume of non-tumoral liver parenchyma outlined in the portal phase of preoperative post-chemotherapy computed tomography. Seventy-eight patients were analyzed: 25 had grade 2–3 SinDil, 27 NRH, and 14 NASH. Three radiomic fingerprints independently predicted SinDil: GLRLM_f3 (OR = 12.25), NGLDM_f1 (OR = 7.77), and GLZLM_f2 (OR = 0.53). Combining clinical, laboratory, and radiomic data, the predictive model had accuracy = 82%, sensitivity = 64%, and specificity = 91% (AUC = 0.87 vs. AUC = 0.77 of the model without radiomics). Three radiomic parameters predicted NRH: conventional_HUQ2 (OR = 0.76), GLZLM_f2 (OR = 0.05), and GLZLM_f3 (OR = 7.97). The combined clinical/laboratory/radiomic model had accuracy = 85%, sensitivity = 81%, and specificity = 86% (AUC = 0.91 vs. AUC = 0.85 without radiomics). NASH was predicted by conventional_HUQ2 (OR = 0.79) with accuracy = 91%, sensitivity = 86%, and specificity = 92% (AUC = 0.93 vs. AUC = 0.83 without radiomics). In the validation set, accuracy was 72%, 71%, and 91% for SinDil, NRH, and NASH. Radiomic analysis of liver parenchyma may provide a signature that, in combination with clinical and laboratory data, improves the diagnosis of CALI.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Juan José Arenas-Jiménez ◽  
Elena García-Garrigós ◽  
Mariana Cecilia Planells-Alduvín

Abstract Background To analyse if performing unenhanced CT of the liver aids in the evaluation of metastatic lesions, response assessment or alter the size of the lesions, compared with portal phase alone, in patients with hepatic metastases from breast carcinoma. Patients and methods One-hundred and fifty-three CT scans of 36 women were included. Scans consisted of unenhanced, arterial and portal delayed phases of the liver. Two readers sorted which phase was best for visualization of metastases, evaluated the number of lesions detected in each phase, selected the best phase for assessment of response in two consecutive scans, and measured one target lesion in all the phases. χ2 was used to compare differences among phases and paired t test for measurement differences. Results Unenhanced, arterial and portal phases were considered better phases by readers 1/2 in 68/67%, 27/28% and 69/70%, and some lesions were missed in 2%, 11% and 7%, respectively. Sensitivity was significantly better for unenhanced and portal phases compared to arterial phase. Comparison between consecutive scans was considered better in unenhanced (80/79%), followed by portal (70/69%) and arterial phases (31/31%). Maximum diameter of target lesions was 15% greater in unenhanced phase (p < 0.001). Conclusions Portal and unenhanced phases of the liver allow better detection and delineation of metastatic hepatic lesions from breast carcinoma. In most cases, unenhanced CT is the best phase to assess response and provides the largest diameter. Therefore, we recommend the use of unenhanced CT in the evaluation of patients with breast carcinoma and suspected or known hepatic metastatic disease.


Author(s):  
Ya-Ning Wang ◽  
Yu Du ◽  
Gao-Feng Shi ◽  
Qi Wang ◽  
Ru-Xun Li ◽  
...  

OBJECTIVE: To investigate feasibility of applying deep learning image reconstruction (DLIR) algorithm in a low-kilovolt enhanced scan of the upper abdomen. METHODS: A total of 64 patients (BMI<28) are selected for the enhanced upper abdomen scan and divided evenly into two groups. The tube voltages in Group A are 100kV in arterial phase and 80kV in venous phase, while tube voltages are 120kV during two phases in Group B. Image reconstruction algorithms used in Group A include the filtered back projection (FBP) algorithm, the adaptive statistical iterative reconstruction-Veo (ASIR-V 40% and 80%) algorithm, and the DLIR algorithm (DL-L, DL-M, DL-H). Image reconstruction algorithm used in Group B is ASIR-V40%. The different reconstruction algorithm images are used to measure the common hepatic artery, liver, renal cortex, erector spinae, and subcutaneous adipose in the arterial phase and the average CT value and standard deviation of the portal vein, liver, spleen, erector spinae, and subcutaneous adipose in the portal phase. The signal-to-noise ratio (SNR) is calculated, and the images are also scored subjectively. RESULTS: In Group A, noise in the aorta, liver, portal vein (the portal phase), spleen (the portal phase), renal cortex, retroperitoneal adipose, and muscle is significantly lower in both the DL-H and ASIR-V80% images, and the SNR is significantly higher than those in the remaining groups (P<0.05). The SNR of each tissue and organ in Group B is not significantly different from that in DL-M, DL-L, and ASIR-V40% in Group A (P>0.05). The subjective image quality scores in the DL-H and B groups are higher than those in the other groups, and the FBP group has significantly lower image quality than the remaining groups (P<0.05). CONCLUSION: For upper abdominal low-kilovolt enhanced scan data, the DLIR-H gear yields a more satisfactory image quality than the FBP and ASIR-V.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1843
Author(s):  
Mirko D’Onofrio ◽  
Riccardo De Robertis ◽  
Gregorio Aluffi ◽  
Camilla Cadore ◽  
Alessandro Beleù ◽  
...  

The aim of this study was to perform a simplified radiomic analysis of pancreatic ductal adenocarcinoma based on qualitative and quantitative tumor features and to compare the results between metastatic and non-metastatic patients. A search of our radiological, surgical, and pathological databases identified 1218 patients with a newly diagnosed pancreatic ductal adenocarcinoma who were referred to our Institution between January 2014 and December 2018. Computed Tomography (CT) examinations were reviewed analyzing qualitative and quantitative features. Two hundred eighty-eight patients fulfilled the inclusion criteria and were included in this study. Overall, metastases were present at diagnosis in 86/288 patients, while no metastases were identified in 202/288 patients. Ill-defined margins and a hypodense appearance on portal-phase images were significantly more common among patients with metastases compared to non-metastatic patients (p < 0.05). Metastatic tumors showed a significantly larger size and significantly lower arterial index, perfusion index, and permeability index compared to non-metastatic tumors (p < 0.05). In the management of pancreatic ductal adenocarcinoma, early detection and correct staging are key elements. The study of computerized tomography characteristics of pancreatic ductal adenocarcinoma showed substantial differences, both qualitative and quantitative, between metastatic and non-metastatic disease.


Sign in / Sign up

Export Citation Format

Share Document