lysine methyltransferases
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alessandra Feoli ◽  
Monica Viviano ◽  
Alessandra Cipriano ◽  
Ciro Milite ◽  
Sabrina Castellano ◽  
...  

Protein lysine methyltransferases constitute a large family of epigenetic writers which catalyse the transfer of a methyl group from the cofactor S-adenosyl-L-methionine to histone and non-histone specific substrates. Alterations in...


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 703
Author(s):  
Sara Weirich ◽  
Mina S. Khella ◽  
Albert Jeltsch

SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.


Author(s):  
Chen Davidovich ◽  
Qi Zhang

Histone lysine methyltransferases (HKMTs) are key regulators of many cellular processes. By definition, HKMTs catalyse the methylation of lysine residues in histone proteins. The enzymatic activities of HKMTs are under precise control, with their allosteric regulation emerging as a prevalent paradigm. We review the molecular mechanisms of allosteric regulation of HKMTs using well-studied histone H3 (K4, K9, K27 and K36) methyltransferases as examples. We discuss the current advances and future potential in targeting allosteric sites of HKMTs for drug development.


Author(s):  
Jordi Hintzen ◽  
Jona Merx ◽  
Marijn Maas ◽  
Sabine Langens ◽  
Paul White ◽  
...  

Histone lysine methyltransferases and acetyltransferases are two classes of epigenetic enzymes that play pivotal roles in human gene regulation. Although they both recognise and posttranslationally modify lysine residues in histone...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abbas H. K. Al Temimi ◽  
Jona Merx ◽  
Christian J. van Noortwijk ◽  
Giordano Proietti ◽  
Romano Buijs ◽  
...  

AbstractHistone lysine methyltransferases (KMTs) play an important role in epigenetic gene regulation and have emerged as promising targets for drug discovery. However, the scope and limitation of KMT catalysis on substrates possessing substituted lysine side chains remain insufficiently explored. Here, we identify new unnatural lysine analogues as substrates for human methyltransferases SETD7, SETD8, G9a and GLP. Two synthetic amino acids that possess a subtle modification on the lysine side chain, namely oxygen at the γ position (KO, oxalysine) and nitrogen at the γ position (KN, azalysine) were incorporated into histone peptides and tested as KMTs substrates. Our results demonstrate that these lysine analogues are mono-, di-, and trimethylated to a different extent by trimethyltransferases G9a and GLP. In contrast to monomethyltransferase SETD7, SETD8 exhibits high specificity for both lysine analogues. These findings are important to understand the substrate scope of KMTs and to develop new chemical probes for biomedical applications.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yunhuan Gao ◽  
Jiang Zhou ◽  
Houbao Qi ◽  
Jianmei Wei ◽  
Yazheng Yang ◽  
...  

AbstractMacrophages are mainly divided into two populations, which play a different role in physiological and pathological conditions. The differentiation of these cells may be regulated by transcription factors. However, it is unclear how to modulate these transcription factors to affect differentiation of these cells. Here, we found that lncLy6C, a novel ultraconserved lncRNA, promotes differentiation of Ly6Chigh inflammatory monocytes into Ly6Clow/neg resident macrophages. We demonstrate that gut microbiota metabolites butyrate upregulates the expression of lncLy6C. LncLy6C deficient mice had markedly increased Ly6Chigh pro-inflammatory monocytes and reduced Ly6Cneg resident macrophages. LncLy6C not only bound with transcription factor C/EBPβ but also bound with multiple lysine methyltransferases of H3K4me3 to specifically promote the enrichment of C/EBPβ and H3K4me3 marks on the promoter region of Nr4A1, which can promote Ly6Chigh into Ly6Cneg macrophages. As a result, lncLy6C causes the upregulation of Nr4A1 to promote Ly6Chigh inflammatory monocytes to differentiate into Ly6Cint/neg resident macrophages.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Theodore Vougiouklakis ◽  
Benjamin J. Bernard ◽  
Nupur Nigam ◽  
Kyunghee Burkitt ◽  
Yusuke Nakamura ◽  
...  

Abstract Protein lysine methyltransferases (PKMTs) constitute a large family of approximately 50 chromatin modifiers that mono-, di- and/or tri-methylate lysine residues on histone and non-histone substrates. With the advent of The Cancer Genome Atlas, it became apparent that this family of chromatin modifiers harbors frequent genetic and expression alterations in multiple types of cancer. In this regard, past and ongoing preclinical studies have provided insight into the mechanisms of action of some of these enzymes, laying the ground for the ongoing development of PKMT inhibitors as novel anticancer therapeutics. The purpose of this review is to summarize existing data obtained by different research groups through immunohistochemical analysis of the protein expression levels of PKMTs, and their respective clinicopathologic associations. We focused on studies that used immunohistochemistry to associate protein expression levels of specific PKMTs, as well as several established histone methylation marks, with clinicopathologic features and survival outcomes in various cancer types. We also review ongoing clinical trials of PKMT inhibitors in cancer treatment. This review underscores the clinical relevance and potential of targeting the family of PKMT enzymes as the next generation of cancer therapy.


2020 ◽  
Vol 21 (7) ◽  
pp. 655-674
Author(s):  
Valentina Lukinović ◽  
Alexandre G. Casanova ◽  
Gael S. Roth ◽  
Florent Chuffart ◽  
Nicolas Reynoird

: Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. : Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. : Recent evidence suggests that what has been observed so far regarding lysine methylation’s implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the “methylome network” raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.


Sign in / Sign up

Export Citation Format

Share Document